
©2020 LoRa Alliance® Page 1 of 85 The authors reserve the right to change
specifications without notice.

TS2-1.1.0 LoRaWAN Backend Interfaces Specification 1

 2

NOTICE OF USE AND DISCLOSURE 3

Copyright © LoRa Alliance, Inc. (2020). All Rights Reserved. 4
 5
The information within this document is the property of the LoRa Alliance (“The Alliance”) and its use and disclosure 6
are subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership Agreements. 7
 8
Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without 9
limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance). The 10
Alliance is not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all 11
such third party intellectual property rights. 12
 13
This document and the information contained herein are provided on an “AS IS” basis and THE ALLIANCE 14
DISCLAIMS ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOTLIMITED TO (A) ANY WARRANTY 15
THAT THE USE OF THE INFORMATION HEREINWILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES 16
(INCLUDING WITHOUTLIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, 17
COPYRIGHT OR TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS 18
FOR A PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT. 19
 20
IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF 21
USE OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR 22
EXEMPLARY, INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN 23
TORT, IN CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF 24
ADVISED OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. 25
 26
 27
The above notice and this paragraph must be included on all copies of this document that are made. 28
 29
LoRa Alliance, Inc. 30
5177 Brandin Court 31
Fremont, CA 94538 32
 33
LoRa Alliance® and LoRaWAN® are licensed trademarks. All company, brand and product names may be trademarks 34
that are the sole property of their respective owners. 35
 36
 37
 38
 39
 40
 41
 42

43

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 2 of 85 The authors reserve the right to change
specifications without notice.

 44

 45

LoRaWAN® Backend Interfaces 46

Technical Specification (TS002-1.1.0) 47

 48
Authored by the LoRa Alliance Technical Committee 49
 50
Technical Committee Chair and Vice-Chair: 51
A.YEGIN (Actility), O.SELLER (Semtech) 52
 53
Editor: 54
A.YEGIN (Actility) 55
 56
Contributors: 57
B.AMPEAU (AFNIC), S.BALAKRICHENAN (AFNIC), A.BETOLAUD (Gemalto), E.BRUINZEEL 58
(KPN), J.CATALANO (Kerlink), P.CHRISTIN (Orange), P.COLA (Bouygues Telecom), P.DUFFY 59
(Cisco), F.DYDUCH (Bouygues Telecom), J.ERNST (Swisscom), E.FORMET (Orange), 60
O.HERSENT (Actility), D.KJENDAL (Senet), M.KUYPER (TrackNet), 61
M.LEGOURRIEREC (Sagemcom), C.LEVASSEUR (Bouygues Telecom), M.PAULIAC 62
(Gemalto), N.SORNIN (Semtech), P.K.THOMSEN (Orbiwise), A.YEGIN (Actility) 63
 64
Version: 1.1.0 65
Date: Oct 19, 2020 66
Status: Final 67
 68
 69
 70
 71
 72

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 3 of 85 The authors reserve the right to change
specifications without notice.

Contents 73

1 Introduction ... 6 74
2 Conventions .. 7 75
3 Network Reference Model ... 8 76
4 End-Device Types and States ... 12 77
5 Commissioning Procedure .. 14 78
6 Activation of ABP End-Devices ... 15 79
7 Activation of OTA End-Devices ... 16 80
8 OTA Activation at Home Procedure .. 17 81
9 Deactivation (Exit) of OTA End-Devices .. 20 82
10 Security Associations .. 21 83
11 Roaming Procedure .. 22 84

11.1 Types of Roaming ... 22 85
11.2 Roaming Policy ... 23 86
11.3 Passive Roaming .. 24 87

11.3.1 Passive Roaming Start .. 24 88
11.3.2 Packet Transmission ... 26 89
11.3.3 Passive Roaming Stop .. 29 90

11.4 Handover Roaming ... 30 91
11.4.1 Handover Roaming Start ... 30 92
11.4.2 Packet Transmission ... 35 93
11.4.3 Handover Roaming Stop ... 35 94
11.4.4 Home NS Regaining Control ... 36 95

12 OTA Roaming Activation Procedure.. 39 96
12.1 Handover Roaming Activation ... 39 97

12.1.1 Handover Roaming Start ... 39 98
12.1.2 Packet Transmission ... 43 99
12.1.3 Handover Roaming Stop ... 43 100

12.2 Passive Roaming Activation .. 43 101
12.2.1 Passive Roaming Start .. 43 102
12.2.2 Packet Transmission ... 48 103
12.2.3 Passive Roaming Stop .. 48 104

13 Geolocation ... 49 105
14 DevAddr Assignment .. 50 106
15 Periodic Recovery ... 52 107
16 Rekeying and DevAddr Reassignment .. 53 108
17 Packet Metadata ... 54 109

17.1 UL Packet Metadata .. 54 110
17.2 DL Packet Metadata .. 56 111

18 Profiles .. 57 112
18.1 Device Profile .. 57 113
18.2 Service Profile ... 57 114
18.3 Routing Profile .. 60 115

19 Usage Data Records ... 61 116
19.1 Network Activation Record .. 61 117
19.2 Network Traffic Record.. 61 118

20 JoinEUI and NetID Resolution... 63 119
20.1 NetID and JoinEUI Conversion for the DNS Configuration .. 63 120
20.2 NetID and JoinEUI Provisioning .. 64 121
20.3 NetID Resolution ... 64 122
20.4 JoinEUI and DevEUI-JoinEUI Concetanation Resolution .. 65 123

21 Transport Layer .. 66 124

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 4 of 85 The authors reserve the right to change
specifications without notice.

22 Key Transport Security.. 67 125
23 Messages and Payloads ... 68 126

23.1 Encoding ... 68 127
23.2 Backend Message Types .. 71 128
23.3 Error Notification Messages .. 73 129
23.4 Data Types.. 73 130
23.5 Result Codes .. 81 131

Glossary... 82 132
Bibliography ... 83 133

References ... 83 134
Revisions ... 84 135
NOTICE OF USE AND DISCLOSURE ... 85 136

 137

Tables 138

Table 1 LoRaWAN security associations.. 21 139
Table 2 NetID Types .. 50 140
Table 3 DevAddr format based on the NetID Type ... 51 141
Table 4 Uplink packet metadata ... 55 142
Table 5 Downlink packet metadata .. 56 143
Table 6 Device Profile .. 57 144
Table 7 Service Profile ... 59 145
Table 8 Routing Profile ... 60 146
Table 9 Network Activation Record .. 61 147
Table 10 Network Traffic Record .. 62 148
Table 11 KeyEnvelope Object .. 67 149
Table 12 Backend message types ... 71 150
Table 13 Messages and payloads .. 73 151
Table 14 JSON encoding of top-level objects ... 74 152
Table 15 Result Object ... 75 153
Table 16 KeyEnvelope Object .. 75 154
Table 17 DeviceProfile Object .. 76 155
Table 18 ServiceProfile Object ... 77 156
Table 19 RoutingProfile Object .. 77 157
Table 20 ULMetadata Object ... 78 158
Table 21 GWInfoElement Object .. 78 159
Table 22 DLMetadata Object ... 79 160
Table 23 LocationInfo Object ... 79 161
Table 24 VSExtension Object .. 80 162
Table 25 Valid values for Result Object ... 81 163

 164

Figures 165

Figure 1 LoRaWAN Network Reference Model (NRM), End-Device at home 8 166
Figure 2 LoRaWAN Network Reference Model (NRM), roaming End-Device 8 167
Figure 3 End-Device types and states .. 12 168
Figure 4 Activation of ABP End-Device .. 15 169
Figure 5 Message flow for OTA Activation at Home Procedure. ... 17 170
Figure 6 Use of Handover and Passive Roaming ... 23 171
Figure 7 Passive Roaming start ... 24 172

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 5 of 85 The authors reserve the right to change
specifications without notice.

Figure 8 Packet transmission using Passive Roaming ... 27 173
Figure 9 sNS-initiated Passive Roaming termination .. 29 174
Figure 10 fNS-initiated Passive Roaming termination... 30 175
Figure 11 Handover Roaming start .. 31 176
Figure 12 Termination of sNS .. 35 177
Figure 13 hNS regaining sNS control ... 37 178
Figure 14 Message flow for Handover Roaming Activation Procedure. 40 179
Figure 15 Message flow for Passive Roaming Activation Procedure. ... 44 180
Figure 16 NetID format ... 50 181
Figure 17 DevAddr format .. 51 182
Figure 18 Backend messages carried over HTTP Requests .. 69 183
Figure 19 Backend messages carried over HTTP Request and Responses 70 184
 185

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 6 of 85 The authors reserve the right to change
specifications without notice.

1 Introduction 186

 187
This document describes the standard interfaces and message flow between 188

1. A Network Server and a Join Server 189
2. A Join Server and an Application Server 190
3. Two Network servers in the case of roaming traffic routing 191

 192
The Network Server to Application Server interface is outside the scope of this document. 193
 194
The primary focus of this document is to describe the message flow between the various entities 195
of the network during the Over-the-Air Activation and Roaming Procedures of an End-Device. 196
 197
 198

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 7 of 85 The authors reserve the right to change
specifications without notice.

2 Conventions 199

 200
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 201
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 202
interpreted as described in RFC 2119. 203
 204
The tables in this document are normative. The figures in this document are informative. 205
 206
 207

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 8 of 85 The authors reserve the right to change
specifications without notice.

3 Network Reference Model 208

 209
Figure 1 and Figure 2 show the Network Reference Model (NRM) for the LoRaWAN architecture. 210
 211

 212
Figure 1 LoRaWAN Network Reference Model (NRM), End-Device at home 213

 214

 215
Figure 2 LoRaWAN Network Reference Model (NRM), roaming End-Device 216

 217
End-Device: 218
 219
The End-Device is a sensor or an actuator. The End-Device is wirelessly connected to a 220
LoRaWAN network through Radio Gateways. The application layer of the End-Device is 221
connected to a specific Application Server in the cloud. All application layer payloads of this End-222
Device are routed to its corresponding Application Server. 223

End-
device

Network Server
(home/serving/

forwarding) ED-NS

Application
Server

Join Server
hNS-JS

AS-hNS

JS-AS

End-
device

Network Server
(home)

ED-NS

Application
Server

Join Server

hNS-JS

AS-hNS

JS-AS

Network Server
(serving)

Network Server
(forwarding)

Radio
Gateway

hNS-sNS

vNS-JS

fNS-sNS

Radio
Gateway

vNS-JS

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 9 of 85 The authors reserve the right to change
specifications without notice.

 224
 225
Radio Gateway: 226
 227
The Radio Gateway forwards all received LoRaWAN radio packets to the Network Server that is 228
connected through an IP back-bone. The Radio Gateway operates entirely at the physical layer. 229
Its role is simply to decode uplink radio packets from the air and forward them unprocessed to 230
the Network Server. Conversely, for downlinks, the Radio Gateway simply executes transmission 231
requests coming from the Network Server without any interpretation of the payload. 232
 233
 234
Network Server: 235
 236
The Network Server (NS) terminates the LoRaWAN MAC layer for the End-Devices connected to 237
the network. It is the center of the star topology. Each NS is identified by a unique NSID (an 238
IEEE EUI64 identifier), and can be configured with one or more NetIDs. 239
 240
Generic features of NS are: 241

• End-Device address check, 242

• Frame authentication and frame counter checks, 243

• Acknowledgements, 244

• Data rate adaptation, 245

• Responding to all MAC layer requests coming from the End-Device, 246

• Forwarding uplink application payloads to the appropriate Application Servers, 247

• Queuing of downlink payloads coming from any Application Server to any End-Device 248
connected to the network, 249

• Forwarding Join-request and Join-accept messages between the End-Devices and the 250
Join Servers. 251

 252
In a roaming architecture, an NS may play three different roles depending on whether the End-253
Device is in roaming situation or not, and the type of roaming that is involved. 254
 255
Serving NS (sNS) controls the MAC layer of the End-Device. 256
 257
Home NS (hNS) is where Device Profile, Service Profile, Routing Profile and DevEUI of the End-258
Device are stored. hNS has a direct relation with the Join Server that will be used for the Join 259
Procedure. It is connected to the Application Server (AS). When hNS and sNS are separated, 260
they are in a roaming agreement. Uplink and downlink packets are forwarded between the sNS 261
and the hNS. 262
 263
Forwarding NS (fNS) is the NS managing the Radio Gateways. When sNS and fNS are 264
separated, they are in a roaming agreement. There may be one or more fNS serving the End-265
Device. Uplink and downlink packets are forwarded between the fNS and the sNS. 266
 267
 268
Join Server: 269
 270
The Join Server (JS) manages the Over-the-Air (OTA) End-Device activation process. There 271
may be several JSs connected to a NS, and a JS may connect to several NSs. 272
 273
The End-Device signals which JS should be interrogated through the JoinEUI field of the Join-274
request message. Each JS is identified by a unique JoinEUI value. Note that AppEUI field of the 275

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 10 of 85 The authors reserve the right to change
specifications without notice.

Join-request in LoRaWAN 1.0/1.0.2 [LW10, LW102] is renamed to JoinEUI field in LoRaWAN 1.1 276
[LW11]. The term JoinEUI is used to refer to the AppEUI in the context of LoRaWAN 1.0/1.0.2 277
End-Devices in this specification. 278
 279
The JS knows the End-Device’s Home Network Server identifier and provides that information to 280
the other Network Servers when required by the roaming procedures. 281
 282
The JS contains the required information to process uplink Join-request frames and generate the 283
downlink Join-accept frames. It also performs the network and application session key 284
derivations. It communicates the Network Session Key of the End-Device to the NS, and the 285
Application Session Key to the corresponding Application Server. 286
 287
For that purpose the JS SHALL contain the following information for each End-Device under its 288
control : 289

• DevEUI 290

• AppKey 291

• NwkKey (only applicable to LoRaWAN 1.1 End-Device) 292

• Home Network Server identifier 293

• Application Server identifier 294

• A way to select the preferred network in case several networks can serve the End-Device 295

• LoRaWAN version of the End-device (LoRaWAN 1.0, 1.0.2, or 1.1) 296
 297
The root keys NwkKey and AppKey are only available in the JS and the End-Device, and they 298
are never sent to the NS nor the AS. 299
 300
Secure provisioning, storage, and usage of root keys NwkKey and AppKey on the End-Device 301
and the backend are intrinsic to the overall security of the solution. These are left to 302
implementation and out of scope of this document. However, elements of this solution may 303
include SE (Secure Elements) and HSM (Hardware Security Modules). 304

 305
The way those information are actually programmed into the JS is outside the scope of this 306
document and may vary from one JS to another. This may be through a web portal for example 307
or via a set of APIs. 308
 309
The JS and the NS SHALL be able to establish secure communication which provides end-point 310
authentication, integrity and replay protection, and confidentiality. The JS SHALL also be able to 311
securely deliver Application Session Key to the Application Server. 312
 313
The JS may be connected to several Application Servers (AS), and an AS maybe connected to 314
several JSs. 315
 316
The JS and the AS SHALL be able to establish secure communication which provides end-point 317
authentication, integrity, replay protection, and confidentiality. 318
 319
 320

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 11 of 85 The authors reserve the right to change
specifications without notice.

Application Server: 321
 322
The Application Server (AS) handles all the application layer payloads of the associated End-323
Devices and provides the application-level service to the end-user. It also generates all the 324
application layer downlink payloads towards the connected End-Devices. 325
 326
There may be multiple ASs connected to a NS, and an AS may be connected to several NSs 327
(operating End-Devices through several networks, for example). An AS may also be connected 328
to multiple JSs. 329
 330
The Home NS routes the uplinks toward the appropriate AS based on the DevEUI. 331
 332
In addition to the aforementioned network elements, LoRaWAN architecture defines the following 333
network interfaces among these entities: 334
 335
hNS-JS: This interface is used for supporting the Join (Activation) Procedure between the JS and 336
the NS. 337
 338
vNS-JS: This interface is used for Roaming Activation Procedure. It is used to retrieve the NSID 339
and NetID of the hNS associated with the End-Device. 340
 341
ED-NS: This interface is used for supporting LoRaWAN MAC-layer signaling and payload 342
delivery between the End-Device and the NS. 343
 344
AS-hNS: This interface is used for supporting delivery of application payload and also the 345
associated meta-data between the AS and the NS. 346
 347
hNS-sNS: This interface is used for supporting roaming signaling and payload delivery between 348
the hNS and the sNS. 349
 350
sNS-fNS: This interface is used for supporting roaming signaling and payload delivery between 351
the sNS and the fNS. 352
 353
AS-JS: This interface is used for delivering Application Session Key from the JS to the AS. 354

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 12 of 85 The authors reserve the right to change
specifications without notice.

4 End-Device Types and States 355

 356
There are two types of LoRaWAN End-Devices: Activation-by-Personalization (ABP) activated 357
End-Devices, and Over-the-Air (OTA) activated End-Devices. ABP End-Devices are directly tied 358
to a specific network by skipping the Join Procedure. OTA End-Devices perform Join Procedure 359
to get activated on a selected network. 360
 361
Figure 3 shows the two types of End-Devices and various End-Device states associated with the 362
OTA End-Devices. 363
 364

 365
 366

Figure 3 End-Device types and states 367

 368
An ABP End-Device SHALL have the following information either when it leaves the 369
manufacturer or upon configuration thereafter: DevAddr, AppSKey, network session keys. 370
Network session keys are SNwkSIntKey, FNwkSIntKey, and NwkSEncKey in case of a R1.1, 371
and NwkSKey in case of a R1.0/1.0.2 End-Device. For that End-Device to readily use the 372
network, its Home NS SHALL have the DevAddr, network session keys, AS info of the End-373
Device; and the AS SHALL have the DevAddr, AppSKey of the End-Device. 374
 375
An OTA End-Device SHALL have the following information either when it leaves the 376
manufacturer or upon configuration thereafter: DevEUI, NwkKey (R1.1-only), AppKey, JoinEUI. 377
At this point it is called a Generic End-Device. The associated JS SHALL have DevEUI, AppKey, 378
NwkKey (R1.1-only) of the End-Device. No NS or AS may have any information about the 379
Generic End-Device until it is commissioned. 380
 381

Manufacturing

ABP-Activated
Device

OTA-Activated
Device

Commissioned
Device

Generic
Device

Join

Commissioning

Exit

Decommissioning Commissioning

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 13 of 85 The authors reserve the right to change
specifications without notice.

Reconfiguration of an End-Device may be possible during its lifecycle. Configuration and 382
reconfiguration procedure details are outside the scope of this specification. 383
 384
Commissioning procedure associates the End-Device with its Home NS and a specific AS. The 385
JS of a commissioned OTA End-Device SHALL have the Home NS info for the End-Device. The 386
AS associated with the End-Device SHALL have the DevEUI of the End-Device. The Home NS 387
SHALL have various profile information related to the End-Device and its service subscription. 388
Mechanisms used for provisioning the AS, JS, and NS with the required information is outside 389
the scope of this specification. 390
 391
When a commissioned OTA End-Device performs successful Join (Activation) Procedure, it 392
knows DevAddr, network session keys, and AppSKey. The JS knows the DevEUI, DevAddr, 393
network session keys, AppSKey, and DevNonce. The JS delivers the DevEUI and AppSKey to 394
the AS. The JS delivers the network session keys, and optionally the encrypted AppSKey to the 395
NS. 396

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 14 of 85 The authors reserve the right to change
specifications without notice.

5 Commissioning Procedure 397

 398
Commissioning Procedure is executed by the AS, JS (only applicable to OTA), and NS for a 399
given End-Device. It involves the JS associating the End-Device with a Home NS (only 400
applicable to OTA), the Home NS and the AS receiving the profile information related to the End-401
Device and its service subscription. The mechanisms used for provisioning the required 402
information on the aforementioned network elements is outside the scope of this specification. 403
 404
Decommissioning Procedure breaks the association between the End-Device and the Home NS 405
and the AS. This procedure involves resetting the state created on the AS and NS at the time of 406
commissioning, unbinding the End-Device and Home NS on the JS (only applicable to OTA). 407
 408
Details of the Commissioning and Decommissioning Procedures are outside the scope of this 409
specification. 410
 411

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 15 of 85 The authors reserve the right to change
specifications without notice.

6 Activation of ABP End-Devices 412

 413
Figure 4 shows activation of an ABP End-Device with an NS. This procedure applies to both 414
R1.0 [LW10, LW102] and R1.1 [LW11] End-Devices and networks. 415
 416

 417
Figure 4 Activation of ABP End-Device 418

 419
Step 0: 420
 421
The End-Device, NS, and AS are configured with the required information, so that the End-422
Device can send packets as soon as it is powered on. 423
 424
Step 1: 425
 426
When the End-Device has application payload to send, it can do so without performing any setup 427
signaling with the network. The packet includes application payload that is encrypted using the 428
AppSKey, and the MIC that is generated using the network session integrity keys (SNwkSIntKey 429
and FNwkSIntKey in case of a R1.1 End-Device, and NwkSKey otherwise). 430
 431
When the NS receives the packet, it SHALL perform network session integrity key lookup based 432
on the DevAddr of the received packet. The NS SHALL verify the MIC using the retrieved keys. If 433
the keys are not found, or if the MIC verification fails, the NS SHALL drop the packet. 434
 435
Step 2: 436
 437
The NS SHALL send the encrypted payload of the accepted packet to the AS associated with the 438
End-Device. The application payload may be accompanied with the metadata, such as DevAddr, 439
FPort, timestamp, etc. The NS SHALL consider receipt of the very first packet from the End-440
Device as the activation of a LoRa session for the End-Device. 441
 442

End-device NS AS Manufacturer

 0. ABP out-of-band settings

1. Data-frame
2. Frame payload,

Metadata

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 16 of 85 The authors reserve the right to change
specifications without notice.

7 Activation of OTA End-Devices 443

 444
OTA Activation Procedure is used by the End-Device in order to mutually authenticate with the 445
network and get authorized to send uplink and receive downlink packets. 446
 447
NSs are categorized in two ways with respect to an End-Device. Home NS is the NS that holds 448
the End-Device, Service, and Routing Profiles of the End-Device, and interfaces with the AS and 449
the JS after any activation. The mechanism used for provisioning the Home NS with the required 450
profile information is outside the scope of this specification. On the other hand, Visited NS is any 451
other NS that has a business and technical agreement with the Home NS for being able to serve 452
the End-Device. 453
 454
There are two variants of the Activation Procedure, namely Activation at Home, and Roaming 455
Activation. 456
 457
Activation at Home: The End-Device performs the Activation Procedure within the radio coverage 458
of the Home NS. At the end of the procedure, the Home NS is the only NS serving the End-459
Device for reaching out to the AS and the JS. 460
 461
Roaming Activation: The End-Device performs the Activation Procedure outside the radio 462
coverage of its Home NS but within the coverage of a Visited NS. In this procedure, the Visited 463
NS learns the identity of the Home NS with the help of the JS and obtains the required End-464
Device and Service Profiles from the Home NS. At the end of the procedure, the End-Device is 465
served by both the Visited NS and the Home NS for reaching out to the AS and the JS. 466
 467
When the End-Device performs a successful Join or Rejoin Procedure, the End-Device is said to 468
have a LoRa session with the backend. Each LoRa session is associated with a set of context 469
parameters managed on the End-Device, and the NS, JS, and AS. (e.g., session keys, DevAddr, 470
ID of NS, etc.). The LoRa session terminates when the End-Device performs Deactivation (Exit) 471
Procedure or another successful Join/Rejoin Procedure. 472
 473

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 17 of 85 The authors reserve the right to change
specifications without notice.

8 OTA Activation at Home Procedure 474

 475
Figure 5. illustrates the message flow for OTA Activation at Home Procedure. This procedure 476
applies to both R1.0 [LW10, LW102] and R1.1 [LW11] End-Devices and networks. 477
 478

 479
 480

 481
Figure 5 Message flow for OTA Activation at Home Procedure. 482

 483
Step 1: 484
 485
The End-Device SHALL transmit a Join-request message. 486
 487
Step 2: 488
 489
When the NS receives the Join-request message, the NS SHALL determine whether it is the 490
Home NS for the End-Device identified by DevEUI, or not. In this flow it is assumed that the NS 491
is the Home NS of the End-Device. See Section 12 for the case where the NS is not the Home 492
NS of the End-Device, but the NS is configured to use the JS for Roaming Activation Procedure. 493
If the NS is neither the Home NS of the End-Device nor configured to use the JS, then the NS 494
SHALL silently ignore the Join-request and the procedure terminates here. 495
 496

End-Device NS AS Manufacturer JS

1. Join-request

3

8. AppSKey delivery

3. JoinReq

4. JoinAns

5. Join-accept

6. Data Packet

7. Data Packet

2. Lookup IP Address of JS

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 18 of 85 The authors reserve the right to change
specifications without notice.

The NS SHALL use DNS to lookup the IP address of the JS based on the Join-request message 497
(see Section 20 for further details), if the NS is not already configured with the IP 498
address/hostname of the JS by an out-of-band mechanism. If DNS lookup fails, then the NS 499
SHALL terminate the procedure here. 500
 501
For R1.0 [LW10] End-Devices configured with an AppEUI not identifying a Join Server, the NS 502
SHOULD be configured with the IP address/hostname of the JS by an out-of-band mechanism. 503
 504
Step 3: 505
 506
The NS sends a JoinReq message to the JS carrying the PHYPayload of the Join-request 507
message, MACVersion, DevEUI, DevAddr, DLSettings, RxDelay, and optionally CFList. The NS 508
SHALL set the value of the MACVersion to the highest common version between the End-Device 509
and the NS. 510
 511
Step 4: 512
 513
The JS SHALL process the Join-request message according to the MACVersion and send 514
JoinAns to the NS carrying Result=Success, PHYPayload with Join-accept message, network 515
session keys (SNwkSIntKey, FNwkSIntKey, and NwkSEncKey in case of a R1.1, and NwkSKey 516
in case of a R1.0/1.0.2 End-Device), either the encrypted AppSKey or SessionKeyID or both, 517
and Lifetime in case of success, and Result=UnknownDevEUI in case End-Device is not 518
recognized by the JS, Result=MICFailed in case the MIC of the Join-reuest failed verification, 519
Result=FrameReplayed in case the DevNonce was used before, Result=JoinReqFailed in any 520
other error cases. 521
 522
JS may create SessionKeyID which is associated with the generated session keys. 523
 524
SNwkSIntKey, FNwkSIntKey, NwkSEncKey, and AppSKey are generated based on the 525
LoRaWAN 1.1 specification [LW11] for R1.1 End-Devices. NwkSKey is generated based on the 526
LoRaWAN 1.0 specification [LW10] for R1.0/R1.0.2 End-Devices. AppSKey is encrypted using a 527
key shared between the JS and the AS when it is delivered from the JS to the NS. 528
 529
For R1.0 [LW10] End-Devices, the JS SHALL process the Join-request message also when the 530
AppEUI is not identifying the JS. 531
 532
Step 5: 533
 534
The NS SHALL forward the received PHYPayload with Join-accept message to the End-Device if 535
the received JoinAns message indicates Success. The End-Device SHALL generate the 536
network session keys, and AppSKey based on the LoRaWAN specification [LW10, LW102, 537
LW11] upon receiving the Join-accept message. 538
 539
Step 6: 540
 541
When the NS receives an uplink packet from the End-Device, the NS SHALL send the DevEUI, 542
and encrypted AppSKey or SessionKeyID or both along with the application payload to the AS. 543
 544
Step 7: 545
 546
When AS receives the encrypted AppSKey along with the application payload, then the AS 547
SHALL decrypt the AppSKey using a secret key shared between the JS and the AS, and use the 548

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 19 of 85 The authors reserve the right to change
specifications without notice.

AppSKey to decrypt the received payload. If the encrypted AppSKey is not made available by the 549
NS, then the AS SHALL proceed to the next step. 550
 551
Step 8: 552
 553
This step takes place in case the AS wants to receive the AppSKey directly from the JS. 554
 555
The AS SHALL request the AppSKey identified by the DevEUI of the End-Device and the 556
SessionKeyID from the JS by sending an AppSKeyReq message. The AppSKey is encrypted using 557
a shared secret between the JS and the AS. The JS sends the encrypted AppSKey, DevEUI and 558
the SessionKeyID to the AS in an AppSKeyAns message. Then the AS SHALL decrypt the 559
encrypted AppSKey using a secret key shared between the JS and the AS. Then, the AS starts 560
using the AppSKey to encrypt and decrypt the application payload. 561
 562
OTA activation of a commissioned End-Device can happen both when the NS and the JS belong 563
to the same administrative domain and when they belong to two separate administrative 564
domains. 565
 566

 567

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 20 of 85 The authors reserve the right to change
specifications without notice.

9 Deactivation (Exit) of OTA End-Devices 568

 569
LoRa session of an OTA-activated End-Device can also be terminated for various reasons, such 570
as user reaching end of contract, malicious End-Device behavior, etc. The procedure used for 571
deactivating the session is the Exit Procedure, which is the counter-part of the Join Procedure. 572
 573
There is no explicit and dedicated LoRaWAN signaling for performing the Exit Procedure. It is 574
assumed that the End-Device and the backend rely on application-layer signaling to perform this 575
procedure. Triggers and the details of application-layer signaling are outside the scope of this 576
specification. 577
 578
When the hNS is notified about the Exit Procedure by the AS and there is a separate sNS, then 579
the hNS SHALL perform Handover Roaming Stop Procedure to convey the termination of the 580
LoRaWAN session to the sNS. 581
 582
The End-Device successfully performing a new Join/Rejoin Procedure also terminates the 583
current LoRaWAN session, and in a way, it can be considered as the Deactivation associated 584
with that session. 585
 586
 587

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 21 of 85 The authors reserve the right to change
specifications without notice.

10 Security Associations 588

 589

Table 1 shows the security associations used by the LoRaWAN deployments. Some of the 590
required security associations will be detailed in the LoRaWAN specification, and some are left to 591
the deployments. 592
 593

End-points Type In or out of
scope for
LoRa
spec.

Used for Created
by (if
dynamic)

Key names

ED-JS Static In-scope Securing
Join/Rejoin

- AppKey,
NwkKey

ED-NS Dynamic In-scope Securing over-
the-air frame
delivery

Join
Procedure

SNwkSIntKey,
FNwkSIntKey,
NwkSEncKey,
NwkSKey

ED-AS Dynamic In scope Securing end-to-
end frame
payload delivery

Join
Procedure

AppSKey

JS-NS Static Out of
scope

Securing
Join/Rejoin and
session key
delivery

- -

AS-JS Static In scope Securing
AppSKey delivery

- ASJSKey

Static Out of
scope

Commissioning/
Decommissioning

- ASJSKey

JS-Manufacturer Static Out of
scope

Securing
AppKey/NwkKey
delivery

- -

AS-NS Static Out of
scope

Securing frame
delivery

- -

NS-NS Static Out of
scope

Securing
Join/Rejoin and
inter-NS frame
delivery

- -

 594
Table 1 LoRaWAN security associations 595

 596

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 22 of 85 The authors reserve the right to change
specifications without notice.

11 Roaming Procedure 597

11.1 Types of Roaming 598

 599
There are two types of LoRa roaming, namely Passive Roaming and Handover Roaming. 600
Passive Roaming enables the End-Device to benefit from LoRaWAN service of a Network Server 601
(NS) even when the End-Device is using the Gateway(s) (GWs) under the control of another NS, 602
within the limits of the overlapping RF capabilities (i.e., channels) of the two networks, for that 603
End-Device. LoRa Session and the MAC-layer control of the End-Device are maintained by the 604
former NS, which is called the Serving NS (sNS), whereas the frame forwarding to/from air 605
interface is handled by the latter NS, which is called the Forwarding NS (fNS). There can only be 606
one sNS for a given LoRa Session whereas zero or more fNSs may be involved with the same 607
session. 608
 609
There are two types of fNSs: Stateful and stateless. A stateful fNS creates context at the onset of 610
the passive roaming of an End-Device and utilizes that context for processing any subsequent 611
uplink/downlink packets of the same End-Device. A stateless fNS does not create any such 612
context and therefore ends up having to process any uplink/downlink packet independent of each 613
other. It is assumed that whether a given fNS is stateless or stateful is known to its roaming 614
partners by some out of scope mechanism. 615
 616
Handover Roaming enables the transfer of the MAC-layer control from one NS to another. hNS 617
maintains the control-plane and data-plane with the JS and the AS even after the End-Device 618
performs a Handover Roaming from one NS to another. hNS stays the same for a given LoRa 619
Session until the End-Device performs the next Join Procedure. Unlike the fNS, the sNS has 620
capability to control the End-Device RF settings, which allows more flexible roaming scenarios. 621
 622

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 23 of 85 The authors reserve the right to change
specifications without notice.

 623
Figure 6 Use of Handover and Passive Roaming 624

 625
Figure 6 illustrates an example case where both the Handover Roaming and Passive Roaming 626
are used for a LoRa Session simultaneously. In this example, the End-Device was activated 627
through NS1 which acts as the hNS. Subsequently, the End-Device has performed Handover 628
Roaming from NS1 to NS2 when NS2 became the sNS, and also Passive Roaming from NS2 to 629
NS3 when NS3 became the fNS for the End-Device. 630
 631
Roaming activation is the capability for an End-Device to activate under the coverage of a Visited 632
NS. 633
 634
This specification describes the procedures for the following roaming cases: 635

- Passive Roaming during an ongoing LoRa Session 636
- Handover Roaming during an ongoing LoRa Session 637
- Roaming Activation of a new LoRa Session based on Handover Roaming between the 638

Home NS and the Visited NS 639
- Roaming Activation of a new LoRa Session based on Passive Roaming between the 640

Home NS and the Visited NS 641
 642
Activation of a new LoRa Session when the Home NS and the Visited NS do not have any 643
roaming agreement is outside the scope of this specification. This includes the case where the 644
two NSs may have roaming agreement with a third NS (e.g., Home NS and 3rd NS having a 645
Handover Roaming agreement, and the 3rd NS and the Visited NS having a Passive Roaming 646
agreement). 647
 648

11.2 Roaming Policy 649

 650
Each network operator SHALL be configured with a roaming policy that can individually 651
allow/disallow Passive Roaming, Handover Roaming, Passive Roaming based Activation, 652
Handover Roaming based Activation with other network operators identified by their NetIDs. For 653
Passive Roaming, the policy SHALL also include whether the uplink MIC check is done by the 654
fNS or not. 655
 656

JS

NS1
(hNS)

AS
NS3
(fNS)

NS2
(sNS)

End-Device

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 24 of 85 The authors reserve the right to change
specifications without notice.

Each network operator SHALL be configured with a roaming policy that can allow/disallow 657
Passive Roaming, Handover Roaming, Passive Roaming based Activation, Handover Roaming 658
based Activation of its individual End-Devices identified by the DevEUI. 659

11.3 Passive Roaming 660

 661
This procedure applies to both R1.0 [LW10, LW102] and R1.1 [LW11] End-Devices and 662
networks. 663

11.3.1 Passive Roaming Start 664
 665

Figure 7 illustrates the message flow for Passive Roaming Procedure between two NSs for an 666
ongoing LoRa Session of an End-Device. Refer to Section 12.2 for Passive Roaming based 667
Activation of a new LoRa Session. 668
 669

 670
Figure 7 Passive Roaming start 671

 672
Step 0: 673
 674
The End-Device is activated through the NS1. 675
 676
Step 1: 677
 678
When the End-Device transmits a packet, it is received by the NS2 which does not have any 679
context associated with the End-Device. 680

End-Device NS1 NS2

 0. ABP or OTA Activation

1. Packet

3. Lookup NS1 IP address based on NetID

(if not cached already) using DNS

4. PRStartReq

5. Verify MIC, check

roaming Policy

6. PRStartAns

7. NS2 is now fNS for Device 7. NS1 is still sNS

2. Extract NwkID, lookup NetID and roaming

policy for target network operator

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 25 of 85 The authors reserve the right to change
specifications without notice.

 681
Step 2: 682
 683
If the NS2 is configured to enable passive roaming with other network operators, then the NS2 684
SHALL attempt to map the NwkID in the received packet with the NetID(s) of the operators with 685
whom it has a passive roaming agreement. If no match is found, then the NS2 SHALL discard 686
the packet and the procedure terminates here. 687
 688
Step 3: 689
 690
If one or more matching NetIDs are found, then the NS2 SHALL use DNS to lookup (see Section 691
20) the IP address of NS for each matching NetID (e.g., NS1 in this case), if the NS2 is not 692
already configured with the IP address/hostname of the NS by an out-of-band mechanism. If 693
there are more than one match, then Steps 4-6 are executed for each matching NS. 694
 695
Step 4: 696
 697
The NS2 SHALL send a PRStartReq message to the NS1, carrying the PHYPayload of the 698
incoming packet, associated ULMetadata, and DedupWindowSize if the NS2 has performed 699
deduplication on this packet. Details of metadata are described in Section 17. 700
 701
Deduplication is the act of batching multiple copies of the same uplink packet in a single backend 702
transmission. It is at the discretion of the fNS whether it performs deduplication or not. The 703
period of time awaited by the deduplicating fNS to receive copies of a given uplink packet is 704
called Deduplication Window. 705
 706
 707
Step 5: 708
 709
The NS1 SHALL check if it already has a passive roaming agreement with the network operator 710
identified by the received NetID, and decide to return a PRStartAns carrying 711
Result=NoRoamingAgreement if no agreement is found. 712
 713
The NS1 SHALL extract the DevAddr of the End-Device from the PHYPayload, identify the 714
corresponding network session integrity key (SNwkSIntKey and FNwkSIntKey in case of R1.1, 715
and NwkSKey in case of R1.0/1.0.2 End-Device), and verify the MIC in the PHYPayload. If the 716
DevAddr is not found then the NS1 SHALL return a PRStartAns carrying 717
Result=UnknownDevAddr. If the FCntUp is already used then the NS1 SHALL return PRStartAns 718
carrying Result=FrameReplayed. If the MIC verification fails, then the NS1 SHALL return a 719
PRStartAns carrying Result=MICFailed. 720
 721
Step 6: 722
 723
If the identified End-Device is configured to use Passive Roaming and the NS1 decides to enable 724
or extend the ongoing Passive Roaming via the NS2, then the NS1 SHALL send a PRStartAns to 725
the NS2 carrying Result=Success, DevEUI, ServiceProfile, and Lifetime associated with the 726
Passive Roaming. The NS1 SHALL also include FCntUp and FNwkSIntKey (in case of R1.1) or 727
NwkSKey (in case of R1.0/1.02) in the PRStartAns message if NS1-NS2 Passive Roaming 728
agreement requires the NS2 to perform MIC check on the uplink packets. If NS1 has already 729
responded to another copy of the same uplink packet from NS2, then the NS1 SHALL send a 730
PRStartAns to the NS2 carrying only Result=Success and DupUL. 731
 732

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 26 of 85 The authors reserve the right to change
specifications without notice.

If the NS1 does not wish to enable Passive Roaming via NS2 at this point in time, then it SHALL 733
send a PRStartAns to the NS2 carrying Result=Deferred, and Lifetime. The NS2 SHALL not 734
send any more PRStartReq to the NS1 for the same End-Device for the duration of Lifetime upon 735
receiving this message. If NS1 has already responded to another copy of the same uplink packet 736
from NS2, then the NS1 SHALL send a PRStartAns to the NS2 carrying only Result=Deferred 737
and DupUL. 738
 739
If a failure has occurred at Step 5, then the NS1 SHALL send a PRStartAns to the NS2 carrying 740
the identified Result. If NS1 has already responded to another copy of the same uplink packet 741
from NS2, then the NS1 SHALL send a PRStartAns to the NS2 carrying only the same Result 742
and DupUL. 743
 744
The NS1 may receive PRStartReq from multiple NSs at the same time, and decide to enable 745
Passive Roaming with zero or more of them. 746
 747
The NS1 and the NS2 SHALL terminate the Passive Roaming on their own (i.e., without 748
involving additional signaling with each other) after the associated Lifetime expires, unless the 749
Passive Roaming is extended with a new round of PRStartReq/PRStartAns before the expiration. 750
For stateless fNS operation, the NS1 SHALL set the value of Lifetime associated with the 751
Passive Roaming to zero. 752
 753
Step 7: 754
 755
The NS2 becomes an fNS for the LoRa Session of the End-Device as soon as it receives the 756
successful PRStartAns. NS1 continues to serve as the sNS. 757
 758
After this point on, the NS2 SHALL forward packets received from the End-Device to the NS1, 759
and the NS1 SHALL accept such packets from NS2. Also, the NS1 SHALL note the NS2 as a 760
candidate fNS for sending packets to the End-Device. The NS2 SHALL accept packets sent from 761
NS1 to be forwarded to the End-Device via one of its GWs. 762
 763

11.3.2 Packet Transmission 764
 765
Figure 8 illustrates the message flow for an End-Device sending and receiving packets using 766
Passive Roaming. Even though the flow shows an uplink packet immediately followed by a 767
downlink packet, the uplink and the downlink parts of the flow can be executed independently in 768
any order as allowed by the class of the End-Device. 769
 770
In case of stateless fNS procedure, each uplink packet SHALL be processed according to 771
Section 11.3.1 (not according to the Steps 1-4 in this section, which assume stateful fNS). 772
Nevertheless, Steps 5-11 in this section are applicable to downlink packet processing even for 773
stateless fNS procedure. 774
 775
All steps in this section are applicable to uplink and downlink packet processing in case of 776
stateful fNS procedure. 777
 778
 779

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 27 of 85 The authors reserve the right to change
specifications without notice.

 780
Figure 8 Packet transmission using Passive Roaming 781

 782
Step 0: 783
 784
Stateful Passive Roaming is enabled between the fNS and the sNS for the End-Device. 785
 786
Step 1: 787
 788
The End-Device transmits a packet, which is received by the fNS. 789
 790
Step 2: 791
 792
If the fNS is required to perform MIC check on the uplink packets based on sNS-fNS Passive 793
Roaming agreement, then the fNS SHALL extract the DevAddr of the End-Device from the 794
packet and identify the FNwkSIntKey/NwkSKey, and verify the MIC in the packet. If no 795
FNwkSIntKey/NwkSKey is found or if the MIC verification fails, then the fNS SHALL discard the 796
packet. 797
 798

End-Device sNS fNS

1. Packet

2. Verify frame MIC

3. XmitDataReq

5. sNS has a frame to

send to device

7. XmitDataReq

6. sNS determines

other NS (if any) to

forward the frame

8. Packet

9. XmitDataAns

 0. Passive Roaming enabled

4. XmitDataAns

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 28 of 85 The authors reserve the right to change
specifications without notice.

Step3: 799
 800
If an End-Device is identified, the fNS SHALL send a XmitDataReq message to the identified 801
End-Device’s sNS carrying the PHYPayload of the received packet and the associated 802
ULMetadata. 803
 804
Step 4: 805
 806
The sNS SHALL send a XmitDataAns message back to the fNS carrying Result upon receiving 807
the XmitDataReq. 808
 809
If the DevAddr is not found then the sNS SHALL return an XmitDataAns carrying 810
Result=UnknownDevAddr. If the FCntUp of the received packet is less than the FCntUp of the 811
last accepted packet for the given End-device, then the sNS SHALL return an XmitDataAns 812
carrying Result=FrameReplayed. If the MIC verification fails, then the sNS SHALL return an 813
XmitDataAns carrying Result=MICFailed. Otherwise, the sNS SHALL return an XmitDataAns 814
carrying Result=Success. 815
 816
If the sNS has already responded to another copy of the same uplink packet from the fNS, then 817
the sNS SHALL send a XmitDataAns to the fNS carrying the same Result used in that earlier 818
XmitDataAns and DupUL. 819
 820
The subsequent steps are executed when the sNS has a packet to send to the End-Device, 821
which may or may not follow the preceding steps. 822
 823
Step 5: 824
 825
The sNS has a packet to send to the End-Device. 826
 827
Step 6: 828
 829
The sNS SHALL determine whether to send the packet via one of the GWs under its control or 830
via a GW under the control of an fNS. 831
 832
Step 7: 833
 834
If the sNS decides to send the packet via an fNS, the sNS SHALL send XmitDataReq message 835
to the fNS carrying the PHYPayload of the packet, and DLMetadata. 836
 837
Step 8: 838
 839
If there is an error condition in the received XmitDataReq, the fNS SHALL send a XmitDataAns 840
message to the sNS carrying Result set to a failure value and SHALL NOT attempt to transmit 841
the packet. Otherwise, the fNS SHALL attempt to transmit the packet to the End-Device based 842
on the metadata information it has received from the sNS. If the metadata includes 843
GWInfo.ULToken, then the fNS may use that for selecting the downlink transmission GW. The 844
fNS may fail to transmit the packet due to the timing constraints and the network conditions. In 845
that case, the fNS SHALL not retry transmission. 846
 847
Step 9: 848
 849
After attempting to transmit the packet, the fNS SHALL send a XmitDataAns message to the sNS 850
carrying one or both of DLFreq1 and DLFreq2 (depending on whether the packet was transmitted 851

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 29 of 85 The authors reserve the right to change
specifications without notice.

at RX1 or RX2 or both) with Result=Success for successful transmission, and Result=XmitFailed 852
value otherwise. 853
 854
 855

11.3.3 Passive Roaming Stop 856
 857
Figure 9 and Figure 10 illustrate the message flows for terminating Passive Roaming. This 858
procedure is applicable to only stateful fNS. 859

 860
Figure 9 sNS-initiated Passive Roaming termination 861

 862
Step 0: 863
 864
Passive Roaming is enabled between the fNS and the sNS for the End-Device. 865
 866
Step 1: 867
 868
When sNS decides to terminate Passive Roaming for the End-Device before the expiration of the 869
Passive Roaming lifetime, the sNS SHALL send a PRStopReq message to the fNS carrying the 870
DevAddr and DevEUI of the End-Device, and optionally Lifetime. The sNS SHALL include 871
Lifetime if the fNS is stateful and the sNS does not wish to receive another PRStartReq from the 872
fNS for the End-Device within the stated time span. 873
 874
Step 2: 875
 876
The fNS SHALL verify that the End-Device with DevEUI is already in Passive Roaming and 877
associated with the sNS. If both conditions are satisfied, then the fNS SHALL send PRStopAns 878
message to the sNS carrying Result=Success. Otherwise, the fNS SHALL send PRStopAns 879
message to the sNS carrying Result=UnknownDevEUI. If the received PRStopReq message 880
included Lifetime, then the fNS SHALL not send another PRStartReq to the sNS for the End-881
Device until the Lifetime expires. 882
 883
In case Passive Roaming for the End-Device was previously terminated with a PRStopReq 884
message or refused with PRStartAns/Result=Deferred, a new PRStopReq message with a 0 value 885
for Lifetime enables NS2 to send again PRStartReq for the End-Device as soon as it receives a 886
packet from that End-Device. This applies only for stateful fNS. 887
 888

fNS sNS

 0.Passive Roaming enabled

1. PRStopReq

2. PRStopAns

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 30 of 85 The authors reserve the right to change
specifications without notice.

 889
Figure 10 fNS-initiated Passive Roaming termination 890

 891
Step 0: 892
 893
Passive Roaming is enabled between the fNS and the sNS for the End-Device. 894
 895
Step 1: 896
 897
When the fNS decides to terminate Passive Roaming for the End-Device before the expiration of 898
the Passive Roaming lifetime, the fNS SHALL send PRStopReq message to the sNS carrying 899
the DevEUI of the End-Device. 900
 901
Step 2: 902
 903
The sNS SHALL verify that the End-Device with DevEUI is served by itself and it is already in 904
Passive Roaming with the fNS. If both conditions are satisfied, then the sNS SHALL send 905
PRStopAns message to the fNS carrying Result=Success. Otherwise, the sNS SHALL send 906
PRStopAns message to the fNS carrying Result=UnknownDevEUI. 907
 908
After the Passive Roaming terminates, the sNS and the fNS SHALL stop forwarding packets 909
towards each other for the designated End-Device. 910

11.4 Handover Roaming 911

 912
This procedure applies to only R1.1 [LW11] End-Devices and networks. 913

11.4.1 Handover Roaming Start 914
 915
Figure 11 illustrates the message flow for Handover Roaming Procedure for an ongoing LoRa 916
Session of an End-Device. Refer to Section 12.1 for Handover Roaming based Activation of a 917
new LoRa Session. 918

fNS sNS

 0. Passive roaming enabled

2. PRStopAns

1. PRStopReq

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 31 of 85 The authors reserve the right to change
specifications without notice.

 919
Figure 11 Handover Roaming start 920

 921
Step 0: 922
 923
Consider the case the End-Device has performed Activation on the NS1. Therefore, NS1 is 924
acting as the hNS for the End-Device. 925
 926
Step 1: 927
 928
The End-Device transmits a Rejoin-request Type 0 message either in response to receiving a 929
ForceRejoinReq MAC command (not shown) or autonomously without an external trigger. 930
 931
Step 2: 932
 933
If the NS2 is acting as the sNS for the End-Device as identified by the received DevEUI, then 934
proceed to Step 6. 935
 936
If the NS2 is not the sNS for the End-Device, then the NS2 SHALL lookup its roaming policy with 937
the operator identified by the NetID in the Rejoin-request. If the NS2 is not configured to enable 938

End-Device NS2 NS1 JS

 0. OTA Activation

1. Rejoin-request

2. Lookup Roaming Policy

for NetID1 and IP of NS1

3. ProfileReq

4. Check Roaming Policy for NetID2

5. ProfileAns

6. HRStartReq
7. RejoinReq

8. RejoinAns
9. HRStartAns

10. Join-accept

11. First packet
11. First packet using NS2

12. NS2 is now sNS

for Device

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 32 of 85 The authors reserve the right to change
specifications without notice.

Handover Roaming with the identified operator, then the NS2 SHALL discard the Rejoin-request 939
and the procedure terminates here. Otherwise, the NS2 SHALL discover the IP address of the 940
NS1 using DNS (see Section 20), if the NS2 is not already configured with the IP 941
address/hostname of the NS1 by an out-of-band mechanism. 942
 943
Step 3: 944
 945
The NS2 SHALL send an ProfileReq message to the NS1 carrying DevEUI if the NS2 does not 946
have the Device Profile of the End-Device in its cache. Steps 4 and 5 are skipped if the 947
ProfileReq is not sent. 948
 949
Step 4: 950
 951
The NS1 SHALL lookup its roaming policy with the operator identified by the received NetID. 952
 953
Step 5: 954
 955
The NS1 SHALL send an ProfileAns to the NS2 carrying Result=Success, Device Profile, and 956
Device Profile Timestamp (which carries the timestamp of the last Device Profile change) if the 957
NS1 is configured to enable Handover Roaming with the NS2 and for the End-Device. If 958
Handover Roaming is not allowed, then the ProfileAns carries Result=NoRoamingAgreement or 959
DevRoamingDisallowed, and Lifetime, and the procedure terminates here. The Lifetime allows 960
the NS1 to request the NS2 not to send additional ProfileReq for the End-Device until the 961
Lifetime expires. 962
 963
Step 6: 964
 965
If the NS2 is acting as the sNS for the End-Device as identified by the received DevEUI and the 966
NS2 does not request the NS1 to process the Rejoin-request, then the NS2 SHALL send a 967
HRStartReq message to the NS1 carrying the PHYPayload with Rejoin-request message, 968
Informative=True, MACVersion, ULMetadata, Device Profile Timestamp. 969
 970
Otherwise, the NS2 SHALL send a HRStartReq message to the NS1 carrying the PHYPayload 971
with Rejoin-request message, MACVersion, ULMetadata, Device Profile Timestamp, and the 972
parameters DevAddr, DLSettings, RxDelay, and optionally CFList identified by the NS2 to be 973
assigned to the End-Device. The NS2 SHALL set the value of the MACVersion to the highest 974
common version between the End-Device and the NS2. 975
 976
Step 7: 977
 978
If Handover Roaming is not allowed with the NS2 or for the End-Device, or if the MIC verification 979
of the message has failed, then the NS1 SHALL proceed to Step 9. Handover Roaming rejection 980
may be due to the per-NS or per-device roaming policy, or potential unnecessity of Handover 981
Roaming while the End-Device is already being served by another sNS. 982
 983
If the NS1 determines that the Device Profile has changed since the time indicated by the 984
received Device Profile Timestamp, then the NS1 concludes that the NS2 has a stale Device 985
Profile information. In that case, the NS1 SHALL proceed to Step 9. 986
 987
If the NS2 is acting as the sNS for the End-Device as identified by the received DevEUI and the 988
NS2 does not request the NS1 to process the Rejoin-request, then the NS1 SHALL proceed to 989
Step 9. 990
 991

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 33 of 85 The authors reserve the right to change
specifications without notice.

Otherwise, the NS1 SHALL forward the RejoinReq message to the JS, carrying the PHYPayload 992
with Rejoin-request message, MACVersion, DevEUI, DevAddr, DLSettings, RxDelay, and CFList 993
as received from the NS2. 994
 995
Step 8: 996
 997
The JS SHALL process the Rejoin-request according to the MACVersion and send a RejoinAns 998
message to the NS1 carrying Result=Success, the PHYPayload with Join-accept message, 999
SNwkSIntKey, FNwkSIntKey, NwkSEncKey, Lifetime if the Rejoin-Request is accepted by the 1000
JS. Otherwise, the JS SHALL send a RejoinAns to the NS1 carrying Result=UnknownDevEUI or 1001
MICFailed or FrameReplayed. 1002
 1003
The NS1 SHALL treat the received Lifetime value as the upper-bound of the session lifetime it 1004
assigns to the LoRa session. 1005
 1006
Step 9: 1007
 1008
If the NS1 determines that the HRStartReq message was coming from the current sNS of the 1009
End-device that did not request the Rejoin-request to be processed, then the NS1 SHALL send 1010
HRStartAns message to the NS2 carrying Result=NoAction, and the procedure terminates here. 1011
 1012
If the NS1 decided not to allow Handover Roaming at Step 7, then the NS1 SHALL send a 1013
HRStartAns message to the NS2 carrying Result set to a failure value (see Table 25), and 1014
Lifetime. The Lifetime allows the NS1 to request the NS2 not to send additional HRStartReq for 1015
the End-Device until the Lifetime expires. 1016
 1017
If the NS1 concluded that the Device Profile known to the NS2 is stale, then the NS1 SHALL 1018
send HRStartAns message to the NS2 carrying Result=StaleDeviceProfile, latest Device Profile, 1019
and its Device Profile Timestamp. The NS2 SHALL jump back to Step 6 to use the new Device 1020
Profile it just received. 1021
 1022
Otherwise, the NS1 SHALL forward the payload of the received RejoinAns message in an 1023
HRStartAns message to the NS2 by also including DLMetadata and Service Profile. The NS1 1024
SHALL also cache the received SNwkSIntKey, so that it can verify the MIC of the subsequent 1025
Rejoin-Type 0 messages before deciding to forward them to the JS. 1026
 1027
Step 10: 1028
 1029
If the HRStartAns message indicates Success, then the NS2 SHALL forward the received 1030
PHYPayload with Join-accept message to the End-Device. Otherwise, the NS2 SHALL not send 1031
any response back to the End-Device. 1032
 1033
If the Rejoin Procedure was successful, then the NS2 SHALL start forwarding packets received 1034
from the End-Device to the NS1, and the NS1 SHALL accept such packets from the NS2. Also, 1035
the NS1 SHALL start forwarding packets received from the AS to the NS2, and the NS2 SHALL 1036
accept such packets from the NS1. 1037
 1038
Step 11: 1039
 1040
The End-Device sends its first uplink packet. The NS2 SHALL transmit that packet to the NS1. 1041
 1042
Step 12: 1043
 1044

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 34 of 85 The authors reserve the right to change
specifications without notice.

The NS2 starts serving as the sNS and the NS1 stops serving as the sNS as soon as the first 1045
uplink packet is received from the End-Device. Meanwhile, the NS1 continues to serve as the 1046
hNS of the End-Device. 1047
 1048

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 35 of 85 The authors reserve the right to change
specifications without notice.

11.4.2 Packet Transmission 1049
 1050
In case of Handover Roaming, the hNS and the sNS SHALL use XmitDataReq/Ans messages 1051
the same way they are used with the Passive Roaming (see Section 11.3.2). The only difference 1052
is, the hNS-sNS interface carries the FRMPayload instead of the PHYPayload, and the 1053
ULMetadata/DLMetadata includes different set of objects as described in Section 17. 1054

11.4.3 Handover Roaming Stop 1055
 1056
Figure 12 illustrates the hNS terminating the Handover Roaming with the previously serving sNS 1057
after the End-Device performs Handover Roaming to a new sNS. 1058
 1059

 1060
Figure 12 Termination of sNS 1061

 1062
Step 0: 1063
 1064
The End-Device performs Handover Roaming between the NS1 and the NS2. 1065
 1066
Step 1: 1067
 1068
The End-Device performs Handover Roaming between the NS1 and the NS3. 1069
 1070
Step 2: 1071
 1072
The very first uplink packet is received from the End-Device by the NS1 via the new sNS (NS3). 1073
 1074
Step 3: 1075
 1076
The NS1 SHALL send an HRStopReq message to the previously serving sNS (NS2) carrying 1077
DevEUI when it receives the first packet from the End-Device via the new sNS (NS3). 1078
 1079

End-Device NS3 JS AS NS2

2. Packet

4. HRStopAns

3. HRStopReq

NS1

1. Device has handover roamed to NS3 (hNS=NS1, sNS=NS3)

0. Device has roamed to NS2 (hNS=NS1, sNS=NS2)

2. First packet using NS3

5. NS2 stops

being sNS

2. First packet using NS3

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 36 of 85 The authors reserve the right to change
specifications without notice.

HRStopReq message carries optionally Lifetime, which means NS1 does not wish to receive 1080
another HRStartReq from NS2 for this DevEUI within the stated time span. 1081
 1082
Step 4: 1083
 1084
The previously serving sNS (NS2) SHALL terminate Handover Roaming and send an 1085
HRStopAns to the NS1 carrying Result=Success if the NS2 has active Handover Roaming for 1086
the End-Device identified with the received DevEUI and associated with the NS1. If the NS2 1087
does not have an active Handover Roaming for the End-Device associated with the NS1, then 1088
the NS2 SHALL send an HRStopAns to the NS1 carrying Result=UnknownDevEUI. 1089
 1090
Step 5: 1091
 1092
The NS2 stops serving as the sNS for the LoRa session of the End-Device. If the NS2 has 1093
enabled Passive Roaming with another NS for the LoRa session of the End-Device, then the 1094
NS2 SHALL also terminate the Passive Roaming with that NS. 1095
 1096
In case Handover Roaming for the End-Device was previously terminated with a HRStopReq 1097
command, a new HRStopReq command with a 0 value for Lifetime enables NS2 to send again 1098
HRStart requests for this End-Device as soon as it receives a new Rejoin-request Type 0 message. 1099
 1100
Another case of Handover Roaming termination is when the sNS decides to terminate roaming. 1101
The sNS may precede the termination procedure by sending a ForceRejoinReq command to the 1102
End-Device. Then, the sNS SHALL send an HRStopReq to the hNS carrying the DevEUI. The 1103
hNS SHALL terminate Handover Roaming and send an HRStopAns to the sNS carrying 1104
Result=Success if the hNS has active Handover Roaming for the End-Device identified with the 1105
received DevEUI and associated with the sNS. If the hNS does not have an active Handover 1106
Roaming for the End-Device associated with the sNS, then the hNS SHALL send an HRStopAns 1107
to the sNS carrying Result=UnknownDevEUI. The sNS may still terminate the Handover 1108
Roaming even if it received a failure Result from the hNS. 1109
 1110

11.4.4 Home NS Regaining Control 1111
 1112
Figure 13 illustrates the message flow of the hNS becoming the sNS by taking the control from 1113
currently serving sNS. 1114

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 37 of 85 The authors reserve the right to change
specifications without notice.

 1115
Figure 13 hNS regaining sNS control 1116

 1117
Step 0: 1118
 1119
The End-Device performs Handover Roaming between the NS1 and the NS2. 1120
 1121
Step 1: 1122
 1123
The NS1 decides to become the sNS. 1124
 1125
Step 2: 1126
 1127
The NS1 SHALL send an HRStartReq message to the NS1 carrying DevEUI to trigger the 1128
Handover Roaming. 1129
 1130
Step 3: 1131
 1132
The NS2 SHALL send HRStartAns to the NS1 carrying Result=Success if the NS2 has active 1133
Handover Roaming for the End-Device identified by the received DevEUI and associated with 1134
the NS1, Result=UnknownDevEUI otherwise. 1135
 1136
Step 4: 1137
 1138
The NS2 SHALL initiate network-triggered Handover Roaming as described in Section 11.4.1. It 1139
is assumed that the End-Device is within the radio coverage of the NS1 when this procedure is 1140
initiated, and the NS1 rejects Handover Roaming attempt from other NSs, including NS2, and 1141
becomes the sNS. 1142
 1143

End-device NS2 JS AS NS1

4. Device has roamed to NS1 (hNS=sNS=NS1)

0. Device has roamed to NS2 (hNS=NS1, sNS=NS2)

3. HRStartAns

2. HRStartReq

5. First packet using NS1

1. NS1 decides to

become sNS

5. First packet using NS1

 6. HRStop

7. NS2 stops being sNS

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 38 of 85 The authors reserve the right to change
specifications without notice.

Step 5: 1144
 1145
The very first uplink packet is received from the End-Device directly by the NS1. 1146
 1147
Step 6: 1148
 1149
The NS1 SHALL perform Handover Roaming Stop Procedure with the NS2 as described in 1150
Section 11.4.3. 1151
 1152
Step 7: 1153
 1154
The NS2 stops serving as the sNS for the LoRa Session of the End-Device. If the NS2 has 1155
enabled Passive Roaming with another NS for the LoRa session of the End-Device, then the 1156
NS2 SHALL also terminate the Passive Roaming with that NS. 1157
 1158
Alternatively, the NS1 can wait until the End-Device decides to initiate Handover Roaming on its 1159
own, effectively skipping the Steps 2 and 3, and continuing with the Steps 4-7. 1160
 1161

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 39 of 85 The authors reserve the right to change
specifications without notice.

12 OTA Roaming Activation Procedure 1162

 1163
This section describes the procedures for activation of a new LoRa Session when the End-1164
Device is outside the coverage of its Home NS but under the coverage of a Visited NS. 1165
 1166
It is assumed that the Home NS is aware of the roaming capabilities of the Visited NS, and the 1167
Home NS decides which type of activation (Passive Roaming or Handover Roaming based) will 1168
be performed. 1169
 1170

12.1 Handover Roaming Activation 1171

 1172
This procedure applies to both R1.0 [LW10, LW102] and R1.1 [LW11] End-Devices and 1173
networks. 1174

12.1.1 Handover Roaming Start 1175
 1176
Figure 14 illustrates the message flow for OTA Handover Roaming Activation Procedure. 1177
 1178

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 40 of 85 The authors reserve the right to change
specifications without notice.

 1179
Figure 14 Message flow for Handover Roaming Activation Procedure. 1180

 1181
Step 1: 1182
 1183
The End-Device SHALL transmit a Join-request message. 1184
 1185
Step 2: 1186
 1187
When the NS2 receives the Join-request message, the NS2 SHALL determine whether it is the 1188
Home NS for the End-Device identified by DevEUI, or not. In this flow, it is assumed that the NS2 1189
is not the Home NS of the End-Device. See Section 8 for the other case. 1190
 1191
The NS2 SHALL determine whether it is configured to work with the JS identified by the JoinEUI 1192
or not. If it is not configured so, then the NS2 SHALL terminate the procedure here. 1193
 1194
The NS2 SHALL use DNS to lookup the IP address of the JS based on the Join-request 1195
message (see Section 20 for further details), if the NS2 is not already configured with the IP 1196
address/hostname of the JS by an out-of-band mechanism. If DNS lookup fails, then the NS2 1197
SHALL terminate the procedure here. 1198

End-Device NS2 NS1 JS

1. Join-request

2. Lookup IP address of JS

6. ProfileAns

7. HRStartReq
8. JoinReq

9. JoinAns
10. HRStartAns

11. Join-accept

3. HomeNSReq

4. HomeNSAns

5. ProfileReq

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 41 of 85 The authors reserve the right to change
specifications without notice.

 1199
Step 3: 1200
 1201
If the NS2 already knows the identity of the Home NS of the End-Device, then Steps 3 and 4 are 1202
skipped. Otherwise, the NS2 SHALL send an HomeNSReq message to the JS carrying the 1203
DevEUI of the Join-request message. 1204
 1205
Step 4: 1206
 1207
The JS SHALL send an HomeNSAns message to the NS2 carrying 1208
Result=NoRoamingAgreement if the NS2 is not in the authorized networks as listed in the JS to 1209
serve the End-Device for Roaming Activation, and the procedure terminates here. 1210
 1211
The JS SHALL send HomeNSAns message to the NS2 carrying Result=Success, HNSID and 1212
HNetID of the End-Device (NetID of NS1). 1213
 1214
Step 5: 1215
 1216
If the NS2 already knows the Device Profile of the End-Device, and NS2 only has Handover 1217
Roaming agreement with NS1, then Steps 5 and 6 are skipped. Otherwise, the NS2 SHALL use 1218
DNS to lookup the IP address of the NS1 based on the NetID in the received Join-request 1219
message (see Section 20), if the NS2 is not already configured with the IP address/hostname of 1220
the NS1 by an out-of-band mechanism. If DNS lookup fails, then the NS2 SHALL terminate the 1221
procedure here. 1222
 1223
The NS2 SHALL send a ProfileReq message to the NS1 carrying the DevEUI. 1224
 1225
Step 6: 1226
 1227
If there is no business agreement between the NS1 and the NS2, then the NS1 SHALL send an 1228
ProfileAns message to the NS2 carrying Result=NoRoamingAgreement. If the NS1 could not 1229
identify the End-Device with the DevEUI, then the NS1 SHALL send a ProfileAns message to the 1230
NS2 carrying Result=UnknownDevEUI. If the End-Device is not allowed to perform Roaming 1231
Activation, then the NS1 SHALL send a ProfileAns message to the NS2 carrying 1232
Result=RoamingActDisallowed. Otherwise, assuming the NS1 decides to enable Handover 1233
Roaming Activation, the NS1 SHALL send a ProfileAns message to the NS2 carrying 1234
Result=Success, RoamingActivationType=Handover, Device Profile, and Device Profile 1235
Timestamp (which carries the timestamp of the last Device Profile change). 1236
 1237
The following steps describe the procedure when the RoamingActivationType is Handover. 1238
 1239
Step 7: 1240
 1241
If the Result of incoming ProfileAns indicates Success, or if the Steps 5 and 6 are skipped, then 1242
the NS2 SHALL send an HRStartReq message to the NS1 carrying the PHYPayload with Join-1243
Request message, MACVersion, ULMetadata, DevAddr, DLSettings, RxDelay, optionally CFList, 1244
and Device Profile Timestamp. The NS2 SHALL set the value of the MACVersion to the highest 1245
common version between the End-Device and the NS2. 1246
 1247
Step 8: 1248
 1249

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 42 of 85 The authors reserve the right to change
specifications without notice.

When steps 5 and 6 are skipped, if there is no business agreement between the NS1 and the 1250
NS2 or if the NS1 could not identify the End-Device with the DevEUI or if the End-Device is not 1251
allowed to perform Roaming Activation then the NS1 shall proceed to Step 10. 1252
 1253
If the NS1 determines that the Device Profile has changed since the time indicated by the 1254
received Device Profile Timestamp, then the NS1 concludes that the NS2 has a stale Device 1255
Profile information. In that case, the NS1 SHALL proceed to Step 10. Otherwise, the NS1 sends 1256
a JoinReq message to the JS carrying the PHYPayload with Join-request message, 1257
MACVersion, DevEUI, DevAddr, DLSettings, RxDelay, and CFList as received from the NS2. 1258
 1259
Step 9: 1260
 1261
The JS SHALL process the Join-request message according to the MACVersion and send 1262
JoinAns to the NS1 carrying Result=Success, PHYPayload with Join-accept message, network 1263
session keys (SNwkSIntKey, FNwkSIntKey, and NwkSEncKey in case of a R1.1, and NwkSKey 1264
in case of a R1.0/1.0.2 End-Device), encrypted AppSKey or SessionKeyID or both, Lifetime in 1265
case of success, and Result=UnknownDevEUI in case the End-Device is not recognized by the 1266
JS, Result=MICFailed in case the MIC of the Join-request fails verification, 1267
Result=FrameReplayed in case the DevNonce was used before, Result=JoinReqFailed in any 1268
other error cases. Network session keys, and AppSKey are generated based on the LoRaWAN 1269
specification [LW10, LW11]. AppSKey is encrypted using a key shared between the JS and the 1270
AS when it is delivered from the JS to the NS. 1271
 1272
Step 10: 1273
 1274
If there is no business agreement between the NS1 and the NS2, then the NS1 SHALL send an 1275
HRStartAns message to the NS2 carrying Result=NoRoamingAgreement. If the NS1 could not 1276
identify the End-Device with the DevEUI, then the NS1 SHALL send a HRStartAns message to 1277
the NS2 carrying Result=UnknownDevEUI. If the End-Device is not allowed to perform Roaming 1278
Activation, then the NS1 SHALL send a HRStartAns message to the NS2 carrying Result= 1279
RoamingActDisallowed. 1280
 1281
If the NS1 concluded that the Device Profile known to the NS2 is stale, then the NS1 SHALL 1282
send HRStartAns message to the NS2 carrying Result=StaleDeviceProfile, latest Device Profile, 1283
and its Device Profile Timestamp. In this case, the NS2 SHALL jump back to Step 7 to use the 1284
new Device Profile it just received. 1285
 1286
Otherwise, the NS1 SHALL send an HRStartAns message to the NS2. The HRStartAns SHALL 1287
contain the same objects as the JoinAns message described in Step 9 and also the Service 1288
Profile of the End-Device. 1289
 1290
In case of a R1.1 End-Device, the NS1 SHALL also cache the received SNwkSIntKey, so that it 1291
can verify the MIC of the subsequent Rejoin-Type 0 messages before deciding to forward them 1292
to the JS. 1293
 1294
Step 11: 1295
 1296
The NS2 SHALL forward the received PHYPayload with Join-accept message to the End-Device 1297
if HRStartAns message indicates success. The End-Device SHALL generate network session 1298
keys, and AppSKey based on the LoRaWAN specification [LW10, LW11] upon receiving the 1299
Join-accept message. 1300
 1301

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 43 of 85 The authors reserve the right to change
specifications without notice.

If encrypted AppSKey is not made available by the JS to the AS via the NS, then the AS SHALL 1302
retrieve it directly from the JS using the same method as defined in Step 8 of OTA Activation at 1303
Home Procedure (see Section 8). 1304

12.1.2 Packet Transmission 1305
 1306
The details of uplink and downlink packet transmission between the hNS and the sNS after the 1307
two are engaged in Roaming Activation for an End-Device are same as the Handover Roaming 1308
case as described in Section 11.4.2. 1309

12.1.3 Handover Roaming Stop 1310
 1311
Handover Roaming Stop Procedure (Section 11.4.3) is used when either the hNS or the sNS 1312
decides to terminate the roaming. 1313
 1314

12.2 Passive Roaming Activation 1315

 1316
This procedure applies to both R1.0 [LW10, LW102] and R1.1 [LW11] End-Devices and 1317
networks. 1318

12.2.1 Passive Roaming Start 1319

 1320
Figure 15 illustrates the message flow for OTA Passive Roaming Activation Procedure. 1321
 1322

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 44 of 85 The authors reserve the right to change
specifications without notice.

 1323
Figure 15 Message flow for Passive Roaming Activation Procedure. 1324

 1325
Step 1: 1326
 1327
The End-Device SHALL transmit a Join-request message. 1328
 1329
Step 2: 1330
 1331
When the NS2 receives the Join-request message, the NS2 SHALL determine whether it is the 1332
Home NS for the End-Device identified by DevEUI, or not. In this flow, it is assumed that the NS2 1333
is not the Home NS of the End-Device. See Section 8 for the other case. 1334
 1335
The NS2 SHALL determine whether it is configured to work with the JS identified by the JoinEUI 1336
or not. If it is not configured so, then the NS2 SHALL terminate the procedure here. 1337
 1338
The NS2 SHALL use DNS to lookup the IP address of the JS based on the Join-request 1339
message (see Section 20 for further details), if the NS2 is not already configured with the IP 1340
address/hostname of the JS by an out-of-band mechanism. If DNS lookup fails, then the NS2 1341
SHALL terminate the procedure here. 1342
 1343
Step 3: 1344
 1345

End-Device NS2 NS1 JS

1. Join-request

2. Lookup IP address of JS

6. ProfileAns

7. PRStartReq
8. JoinReq

9. JoinAns
10. PRStartAns

11. Join-accept

3. HomeNSReq

4. HomeNSAns

5. ProfileReq

12. PRStartNotif

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 45 of 85 The authors reserve the right to change
specifications without notice.

If the NS2 already knows the identity of the Home NS of the End-Device, then Steps 3 and 4 are 1346
skipped. Otherwise, the NS2 SHALL send an HomeNSReq message to the JS carrying the 1347
DevEUI of the Join-request message. 1348
 1349
Step 4: 1350
 1351
The JS SHALL send an HomeNSAns message to the NS2 carrying 1352
Result=NoRoamingAgreement if the NS2 is not in the authorized networks as listed in the JS to 1353
serve the End-Device for Passive Roaming Activation, and the procedure terminates here. 1354
 1355
The JS SHALL send HomeNSAns message to the NS2 carrying Result=Success, HNSID and 1356
HNetID of the End-Device (NetID of NS1). 1357
 1358
Step 5: 1359
 1360
If the NS2 only has Passive Roaming agreement with NS1, then Steps 5 and 6 are skipped. 1361
Otherwise, the NS2 SHALL use DNS to lookup the IP address of the NS1 based on the NetID 1362
received from the JS, if the NS2 is not already configured with the IP address/hostname of the 1363
NS1 by an out-of-band mechanism. If DNS lookup fails, then the NS2 SHALL terminate the 1364
procedure here. 1365
 1366
The NS2 SHALL send a ProfileReq message to the NS1 carrying the DevEUI. 1367
 1368
Step 6: 1369
 1370
If there is no business agreement between the NS1 and the NS2, then the NS1 SHALL send an 1371
ProfileAns message to the NS2 carrying Result=NoRoamingAgreement. If the NS1 could not 1372
identify the End-Device with the DevEUI, then the NS1 SHALL send a ProfileAns message to the 1373
NS2 carrying Result=UnknownDevEUI. If the End-Device is not allowed to perform Roaming 1374
Activation, then the NS1 SHALL send a ProfileAns message to the NS2 carrying 1375
Result=RoamingActDisallowed. Otherwise, assuming the NS1 decides to enable Passive 1376
Roaming Activation, the NS1 SHALL send a ProfileAns message to the NS2 carrying 1377
Result=Success, RoamingActivationType. 1378
 1379
The following describes the behavior when the RoamingActivationType is Passive. 1380
 1381
Step 7: 1382
 1383
If the Result of incoming ProfileAns indicates Success, or if the Steps 5 and 6 were skipped, then 1384
the NS2 SHALL send an PRStartReq message to the NS1 carrying the PHYPayload with Join-1385
Request message, ULMetadata, and DedupWindowSize if the NS2 has performed deduplication 1386
on this packet. 1387
 1388
Step 8: 1389
 1390
When steps 5 and 6 are skipped, if there is no business agreement between the NS1 and the 1391
NS2, or if the NS1 could not identify the End-Device with the DevEUI, or if the End-Device is not 1392
allowed to perform Roaming Activation, or if the NS1 does not wish to enable Passive Roaming 1393
activation via NS2 then the NS1 shall proceed to step 10. 1394
 1395
Otherwise, The NS1 SHALL send a JoinReq message to the JS carrying the PHYPayload with 1396
Join-request message, DevEUI, DevAddr, DLSettings, RxDelay, and optionally CFList defined by 1397
the NS1. 1398

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 46 of 85 The authors reserve the right to change
specifications without notice.

 1399
Step 9: 1400
 1401
The JS processes the Join-request message and sends JoinAns to the NS1 carrying 1402
Result=Success, PHYPayload with Join-accept message, network session keys (SNwkSIntKey, 1403
FNwkSIntKey, and NwkSEncKey in case of a R1.1, and NwkSKey in case of a R1.0/1.0.2 End-1404
Device), encrypted AppSKey or SessionKeyID or both, Lifetime in case of success, and 1405
Result=UnknownDevEUI in case the End-Device is not recognized by the JS, Result=MICFailed 1406
in case the MIC of the Join-request fails verification, Result=FrameReplayed in case the 1407
DevNonce was used before, Result=JoinReqFailed in any other error cases. Network session 1408
keys, and AppSKey are generated based on the LoRaWAN specification [LW10, LW102, LW11]. 1409
AppSKey is encrypted using a key shared between the JS and the AS when it is delivered from 1410
the JS to the NS. 1411
 1412
Step 10: 1413
 1414
If there is no business agreement between the NS1 and the NS2, then the NS1 SHALL send an 1415
PRStartAns message to the NS2 carrying Result=NoRoamingAgreement. If the NS1 could not 1416
identify the End-Device with the DevEUI, then the NS1 SHALL send a PRStartAns message to 1417
the NS2 carrying Result=UnknownDevEUI. If the End-Device is not allowed to perform Roaming 1418
Activation, then the NS1 SHALL send a PRStartAns message to the NS2 carrying Result= 1419
RoamingActDisallowed. If the NS1 does not wish to enable Passive Roaming activation via NS2, 1420
then it SHALL send a PRStartAns to the NS2 carrying Result=Deferred, and Lifetime. The NS2 1421
SHALL not send any more PRStartReq to the NS1 for the same End-Device for the duration of 1422
Lifetime upon receiving this message. If NS1 has already responded to another copy of the same 1423
uplink packet from NS2, then the NS1 SHALL send a PRStartAns to the NS2 carrying Result 1424
according to the previous conditions and DupUL. 1425
 1426
Otherwise, the NS1 SHALL send a PRStartAns to the NS2 carrying the Result=Success, 1427
PHYPayload with Join-accept message, DLMetadata, ServiceProfile, and Lifetime associated 1428
with the Passive Roaming when responding to the PRStartReq that was sent with the chosen 1429
downlink fNS/gateway. The NS1 SHALL also include DevEUI if NS2 is operating as a stateful 1430
fNS, and, FCntUp and FNwkSIntKey (in case of R1.1) or NwkSKey (in case of R1.0/1.0.2) in the 1431
PRStartAns message if NS1-NS2 Passive Roaming agreement requires the NS2 to perform MIC 1432
check on the uplink packets. If NS1 has already responded to another copy of the same uplink 1433
packet from NS2, then the NS1 SHALL send a PRStartAns to the NS2 carrying only 1434
Result=Success and DupUL. If the NS2 is not chosen as the downlink fNS by the NS1 and NS1 1435
has not already responded to another copy of the same uplink packet from NS2, then the NS1 1436
SHALL send a PRStartAns to the NS2 carrying only Result=Success. 1437
 1438
Step 11: 1439
 1440
The NS2 SHALL forward the received PHYPayload with Join-accept message to the End-Device 1441
if PRStartAns message indicates success, using the downlink parameters received from NS1. 1442
The End-Device SHALL generate network session keys, and AppSKey based on the LoRaWAN 1443
specification [LW10, LW102, LW11] upon receiving the Join-accept message. 1444
 1445
 1446
 1447
Step 12 : 1448
 1449
If the NS2 received PHYPayload with Join-accept packet from the NS1, then the NS2 SHALL 1450
send PRStartNotif message to the NS1 carrying one or both of DLFreq1 and DLFreq2 1451

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 47 of 85 The authors reserve the right to change
specifications without notice.

(depending on whether the packet was transmitted at RX1 or RX2 or both) with Result=Success 1452
for successful transmission, and Result=XmitFailed value otherwise. 1453
 1454
If encrypted AppSKey is not made available by the JS to the AS via the NS, then the AS SHALL 1455
retrieve it directly from the JS using the same method as defined in Step 8 of OTA Activation at 1456
Home Procedure (see Section 8). 1457
 1458
When the procedure completes successfully, the NS2 becomes the fNS, and the NS1 becomes 1459
the sNS (in addition to being the hNS) of the newly created LoRa Session. 1460
 1461

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 48 of 85 The authors reserve the right to change
specifications without notice.

12.2.2 Packet Transmission 1462
 1463
The details of uplink and downlink packet transmission between the sNS and the fNS after the 1464
two are engaged in Passive Roaming Activation for an End-Device are same as the Passive 1465
Roaming case as described in Section 11.3.2. 1466
 1467

12.2.3 Passive Roaming Stop 1468
 1469
Passive Roaming Stop Procedure (Section 11.3.3) is used when either the sNS or the fNS 1470
decides to terminate the roaming. 1471

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 49 of 85 The authors reserve the right to change
specifications without notice.

13 Geolocation 1472

 1473
LoRaWAN networks can utilize various techniques relying on the available information (e.g., 1474
TDoA, RSSI, etc.) to determine the location of the End-devices. A geolocation algorithm running 1475
on the network node uses the metadata of uplink frames and produces geographic coordinates 1476
of the End-device. 1477
 1478
Geolocation is an optional feature for networks. A given network MAY be capable of utilizing 1479
ULMetadata to produce geographic coordinates and send those coordinates to the upstream 1480
network node (e.g., the AS is the upstream node for an hNS, hNS for sNS, and sNS for fNS), or 1481
sending the geolocation-specific ULMetadata to the upstream network node, or doing both or 1482
none of these. Network operators are expected to negotiate their geolocation capability with their 1483
partners using an out-of-band mechanism. 1484
 1485
When a network has agreed to provide either geolocation-specific ULMetadata or geographic 1486
coordinates, it can be instructed to do so on a per-device basis. ServiceProfile provided by the 1487
upstream network node indicates if one or both type of information is expected to be sent by the 1488
downstream network node to the upstream one for a given End-device. See SendLoc, 1489
LocSolverAuxData, AddLocMetadata objects that are specifically defined for this purpose. 1490
 1491
When the downstream network node is providing geolocation-specific metadata, such data is 1492
added to the ULMetadata (see AntennaID, FineRecvTime, FRTContext, and ADRBit objects) 1493
that is carried along the uplink packet. FineRecvTime value MAY be encrypted by the GW, in 1494
which case FRTContext SHALL be provided in order to identify the decryption key. Retrieval of 1495
the decryption key by the consumer of the FineRecvTime is outside the scope of this 1496
specification. 1497
 1498
When a downstream network node is providing geographic coordinates, that information is 1499
carried in a dedicated message (see XmitLocReq) sent to the upstream node. The timing of 1500
XmitLocReq message generation depends on the geolocation algorithm generating geographic 1501
coordinates. 1502
 1503
The interface required for allowing geolocation algorithm to be executed on a node separate from 1504
the NS or AS is outside the scope of this specification. 1505
 1506

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 50 of 85 The authors reserve the right to change
specifications without notice.

14 DevAddr Assignment 1507

 1508
NetID is a 24bit network identifier assigned to LoRaWAN networks by the LoRa Alliance. Values 1509
0x000000 and 0x000001 are reserved for experimental networks and networks that are not using 1510
roaming. These values can be used by any network without getting permission from the LoRa 1511
Alliance. LoRaWAN networks that use roaming need to obtain a unique NetID value assigned by 1512
the LoRa Alliance. 1513
 1514
 1515

3 bits 21-N bits N bits

Type RFU ID

 1516

Figure 16 NetID format 1517

 1518
Figure 16 illustrates the format of the NetID which is composed of the following fields: 1519
 1520

Type: The 3 MSB (Most Significant Bits) of the NetID indicates the NetID Type (0 through 1521
7). 1522
 1523
ID: Variable length LSB (Least Significant Bits) of NetID as assigned by the LoRa 1524
Alliance. Length of the ID field depends on the Type of the NetID. 1525
 1526
RFU: If there are any unused bits in the NetID after the Type and ID fields are consumed, 1527
they are marked as RFU and set to zero. These RFU bits are placed in between the Type 1528
and ID bits, if those fields do not already consume the 24 bits of the NetID. 1529

 1530
Table 2 provides the details on the Type field setting, number of RFU bits, and length of the ID 1531
field for each NetID Type. 1532
 1533
 1534

NetID Type 24bit NetID

Type field setting (3 MSB) Number of RFU bits ID field

0 000 15 6 LSB

1 001 15 6 LSB

2 010 12 9 LSB

3 011 0 21LSB

4 100 0 21LSB

5 101 0 21LSB

6 110 0 21LSB

7 111 0 21LSB

 1535
Table 2 NetID Types 1536

 1537
For example, the NetID value 0x000003 is a Type 0 NetID with ID=3, and value 0x6000FF is a 1538
Type 3 NetID with ID=255. 1539
 1540
 1541

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 51 of 85 The authors reserve the right to change
specifications without notice.

 1542

L bits M bits N bits

Type Prefix NwkID NwkAddr

 1543
Figure 17 DevAddr format 1544

 1545
DevAddr is an End-Device identifier assigned by the LoRaWAN network. Figure 17 illustrates the 1546
format of the DevAddr which is composed of the following fields: 1547
 1548

Type Prefix: Variable length MSB that indicates the NetID Type of the assigning network. 1549
 1550

NwkID: Variable length bits that follow the Type Prefix field. They are used for identifying 1551
the network. The value of NwkID is set to the predefined number of LSB of ID field of the 1552
NetID. 1553
 1554

 NwkAddr: Variable length LSB that is assigned to the End-Device by the network. 1555
 1556
 1557
Concatenation of Type Prefix and NwkID fields in this specification takes the same value as the 1558
DevAddr field that precedes the NwkAddr field in the LoRaWAN link-layer specifications (e.g., 1559
the AddrPrefix field in LoRaWAN L2 1.0.4 Specification [LW104], and NwkID field in earlier 1560
versions of the L2 specification). 1561
 1562
Table 3 provides the details on the length and setting of Type Prefix field, size of NwkID and 1563
NwkAddr fields for each Type of NetID. The NS shall use the parameters defined in this table 1564
when assigning a DevAddr to its End-Devices based on its NetID. 1565
 1566
 1567

NetID Type 32bit DevAddr

Type Prefix
Length (MSB)

Type Prefix
Value (binary)

Number of NwkID
bits

Number of
NwkAddr bits

0 1 0 6 25

1 2 10 6 24

2 3 110 9 20

3 4 1110 11 17

4 5 11110 12 15

5 6 111110 13 13

6 7 1111110 15 10

7 8 11111110 17 7

 1568
Table 3 DevAddr format based on the NetID Type 1569

 1570
When number of NwkID bits is less than the number of bits in the ID field of the NetID (as in 1571
Types 3 through 7), that means multiple NetIDs are likely to map to the same NwkID value. 1572
Section 11.3 Passive Roaming describes how the fNS tries multiple NSs to find the sNS of the 1573
End-Device. 1574
 1575

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 52 of 85 The authors reserve the right to change
specifications without notice.

15 Periodic Recovery 1576

 1577
Rejoin-request Type 1 message is defined for restoring connectivity with an End-Device in case 1578
of complete state loss on the sNS. The message is sent by the End-Device periodically for giving 1579
the sNS a chance to recover. 1580
 1581
When an NS receives a Rejoin-request Type 1, the NS SHALL determine if it has a valid LoRa 1582
Session with the End-Device as identified by the received DevEUI. If the NS is not acting as the 1583
sNS for the End-Device, then the NS SHALL treat the incoming Rejoin-request Type 1 exactly 1584
same way as it would process a Join-request (i.e., following Activation at Home or Roaming 1585
Activation Procedures by transporting Rejoin-request message instead of the Join-request 1586
message from the NS to the JS). If the NS is acting as the sNS for the End-Device, then the NS 1587
SHALL behave as described in Section 6.2.4.4 of [LW11]. 1588
 1589
This procedure applies to only R1.1 [LW11] End-Devices and networks. 1590
 1591

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 53 of 85 The authors reserve the right to change
specifications without notice.

16 Rekeying and DevAddr Reassignment 1592

 1593
If the sNS decides to either refresh the session keys, reset the frame counters, or assign a new 1594
DevAddr to the End-Device without changing the channel definitions, the sNS SHALL send a 1595
ForceRejoinReq with RejoinType 2 MAC command to the End-Device. 1596
 1597
The End-Device SHALL send a Rejoin-request Type 2 message when it receives a 1598
ForceRejoinReq from the sNS. 1599
 1600
The End-Device SHALL not send a Rejoin-request Type 2 message unless it receives a valid 1601
ForceRejoinReq with RejoinType 2 from its sNS. The sNS SHALL discard a received Rejoin-1602
request Type 2 if the sNS has not sent a ForceRejoinReq with RejoinType 2 MAC command to 1603
the End-Device. 1604
 1605
Processing of the Rejoin-request Type 2 message is same as processing of Rejoin-request Type 1606
0 as described in Section 11.4.1 Handover Roaming Start, considering the receiving NS (NS2 in 1607
Figure 11) is already the sNS. 1608
 1609
If the End-Device decides to refresh the session keys or reset the frame counters without 1610
receiving a ForceRejoinReq with RejoinType 2 MAC command from the sNS, then the End-1611
Device SHALL send a Join-request. 1612
 1613
This procedure applies to only R1.1 [LW11] End-Devices and networks. 1614
 1615

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 54 of 85 The authors reserve the right to change
specifications without notice.

17 Packet Metadata 1616

17.1 UL Packet Metadata 1617

 1618
Each uplink packet received by the LoRa system is associated with a set of parameters obtained 1619
from the radio receiver and the local context of the LoRa Session of the End-Device. Such 1620
parameters are shared among communicating network elements in the form of metadata along 1621
with the packet payload in order to assist uplink transmission. Table 4 illustrates the metadata 1622
details for the uplink packets. 1623
 1624
 1625

Information
element

Generated
by

Carried
over
fNS-
sNS
interface

Carried
over
sNS-hNS
interface

Description/notes

DevEUI fNS Yes Yes Included if available to the sender by means
of the received packet or local context

DevAddr fNS Yes Yes Included if available to the sender by means
of the received packet or local context

FPort sNS No Yes sNS sends FRMPayload (not PHYPayload)
to the hNS, hence missing FPort is carried
separately

FCntDown sNS No Yes The last downlink application counter used
for the End-Device, if available. True 32 bits,
if using 32-bit counters. Carries AFCntDown
if using R1.1.

FCntUp sNS No Yes sNS sends FRMPayload (not PHYPayload)
to the hNS, hence missing FCntUp is carried
separately True 32 bits, if using 32-bit
counters. Carries AFCntUp if using R1.1.

Confirmed sNS No Yes Set to True if MType is Confirmed Data Up,
False otherwise

ADRBit sNS No Yes Set to True if ADR bit is set, False otherwise

DataRate fNS Yes Optional Generated by the NS controlling the
receiving GW

ULFreq fNS Yes Optional Transmission frequency of the UL packet.
Generated by the NS controlling the
receiving GW.

Margin fNS No Optional Reported if requested by the Service Profile.

Battery fNS No Optional Reported if requested by the Service Profile.

FNSULToken fNS Optional No Opaque value generated by the fNS, which
encodes auxiliary parameters that can assist
the fNS later with downlink packet
transmission. (See Note 1)

RecvTime fNS Yes Yes Timestamp of the packet arrival (GPS time
with 1sec precision). Generated by the NS
controlling the receiving GW.

RFRegion fNS Yes No RFRegion of the fNS.

GWCnt fNS Optional Optional Number of Gateways that received the same
UL packet within a pre-configured timeout
period. Generated by the NS controlling the
receiving GW.

GWInfo fNS Yes Optional List of parameters (see below) for each GW
(for each GW antenna, when AntennaID is

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 55 of 85 The authors reserve the right to change
specifications without notice.

present) that received the same UL packet.
Generated by the NS controlling the
receiving GWs. Mandatory for fNS only if fNS
can send DLs.

> GWID fNS Optional Optional GW identifier

> AntennaID fNS Optional Optional Antenna identifier

> FineRecvTime fNS Optional Optional Nanosec within RecvTime, may be encrypted

> FRTContext fNS Optional Optional FineRecvTime Context. When included,
FineRecvTime is encrypted.

> RFRegion fNS Optional Optional RF region of the GW

> RFParamSetID fNS Optional Optional ID of the RF parameter set used by the GW.
ID and associated RF parameters are
exchanged between the fNS and sNS by an
out-of-band mechanism.

> RSSI fNS Yes Optional Received signal strength indication

> SNR fNS Yes Optional Signal-to-noise ratio

> Lat fNS Optional Optional Latitude of the GW/antenna

> Lon fNS Optional Optional Longitude of the GW/antenna

> Alt fNS Optional Optional Elevation of the GW/antenna

> ULToken fNS Optional No Opaque value generated by the GW, which

encodes auxiliary parameters that can assist

the same GW later with downlink packet

transmission. (See Note 1)

> DLAllowed fNS Yes No Indication from the GW about its resource
availability for possible downlink transmission

 1626
Table 4 Uplink packet metadata 1627

Note 1 : In case of stateless fNS, at least one of the two information elements SHALL be present. 1628
 1629

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 56 of 85 The authors reserve the right to change
specifications without notice.

17.2 DL Packet Metadata 1630

 1631
Each downlink packet received or generated by the LoRa system is associated with a set of 1632
parameters obtained from the AS and the local context of the LoRa Session of the End-Device. 1633
Such parameters are shared among communicating network elements in the form of metadata 1634
along with the packet payload in order to assist the downlink transmission. Table 5 illustrates the 1635
metadata details for downlink packets. 1636
 1637

Information
element

Generated
by

Carried
over hNS-
sNS
interface

Carried
over
sNS-fNS
interface

Description/notes

DevEUI hNS Yes Yes

FPort hNS Yes No hNS sends FRMPayload to sNS, hence FPort
is carried separately. FPort=0 is disallowed.
sNS SHALL return Result=InvalidFPort.

FCntDown hNS Yes No AFCntDown in R1.1

Confirmed hNS/sNS Yes No Optionally used for indicating Confirmed
transmission

DLFreq1 sNS No Yes Transmission frequency for RX1

DLFreq2 sNS No Yes Transmission frequency for RX2

RXDelay1 sNS No Yes Receive delay for RX1

ClassMode sNS No Yes Device mode for the DL

DataRate1 sNS No Yes Data rate for RX1

DataRate2 sNS No Yes Data rate for RX2

FNSULToken sNS No Yes Copy of the last FNSULToken received from
the fNS, if available

GWInfo sNS No Optional List of ULToken parameters (see below) for
each GW that received the latest UL packet.
Values copied from the latest ULMetadata.

> ULToken sNS No Yes Copy of the ULToken received for each GW. If
provided in ULMetadata, it SHALL be present
in DLMetadata.

HiPriorityFlag sNS No Yes fNS SHOULD do its best to transmit the
packet (e.g., set when sending
RejoinSetupRequest command)

 1638
Table 5 Downlink packet metadata 1639

 1640

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 57 of 85 The authors reserve the right to change
specifications without notice.

18 Profiles 1641

18.1 Device Profile 1642

 1643
Device Profile includes End-Device capabilities and boot parameters that are needed by the NS 1644
for setting up the LoRaWAN radio access service. Table 6 illustrates the information elements that 1645
are included in a Device Profile. These information elements SHALL be provided by the End-1646
Device manufacturer. 1647
 1648

Information element M/O Description/notes

DeviceProfileID M Unique identifier for the set of End-device parameters

SupportsClassB M End-Device supports Class B

ClassBTimeout O Maximum delay for the End-Device to answer a MAC request
or a confirmed DL frame (mandatory if class B mode
supported). Used as CLASS_B_RESP_TIMEOUT in [LW104].

PingSlotPeriod O Mandatory if class B mode supported

PingSlotDR O Mandatory if class B mode supported

PingSlotFreq O Mandatory if class B mode supported

SupportsClassC M End-Device supports Class C

ClassCTimeout O Maximum delay for the End-Device to answer a MAC request
or a confirmed DL frame (mandatory if class C mode
supported). Used as CLASS_C_RESP_TIMEOUT in [LW104].

MACVersion M Version of the LoRaWAN supported by the End-Device

RegParamsRevision M Revision of the Regional Parameters document supported by
the End-Device

SupportsJoin M End-Device supports Join (OTAA) or not (ABP)

RXDelay1 O Class A RX1 delay (mandatory for ABP)

RXDROffset1 O RX1 data rate offset (mandatory for ABP)

RXDataRate2 O RX2 data rate (mandatory for ABP)

RXFreq2 O RX2 channel frequency (mandatory for ABP)

FactoryPresetFreqs O List of factory-preset frequencies (mandatory for ABP)
MaxEIRP M Maximum EIRP supported by the End-Device

MaxDutyCycle O Maximum duty cycle supported by the End-Device

RFRegion M RF region name

Supports32bitFCnt O End-Device uses 32bit FCnt (mandatory for LoRaWAN 1.0
End-Device)

 1649
Table 6 Device Profile 1650

“M” in the M/O column indicates “Mandatory to include” (see below for additional considerations), 1651
and “O” indicates “Optional to include”. 1652
 1653
The sender of the DeviceProfile object MAY exchange the parameters with the receiver using an 1654
out-of-band mechanism. Taking this into consideration, when the DeviceProfile is delivered using 1655
an in-band mechanism of this specification, the sender SHALL either include the DeviceProfileID 1656
only (i.e., all other parameters are omitted even if marked as mandatory in Table 6), or both the 1657
DeviceProfileID and all other mandatory parameters (and optionally the non-mandatory ones as 1658
well). The sender SHALL NOT modify parameters once they are bound to a DeviceProfileID. 1659
 1660

18.2 Service Profile 1661

 1662

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 58 of 85 The authors reserve the right to change
specifications without notice.

Service Profile includes service parameters that are needed by the NS for setting up the LoRa 1663
radio access service and interfacing with the AS. Table 7 illustrates the information elements that 1664
are included in a Service Profile. 1665
 1666

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 59 of 85 The authors reserve the right to change
specifications without notice.

 1667
Information element Carried over

hNS-sNS
interface

Carried over
sNS-fNS
interface

Description/notes

ServiceProfileID M M Unique identifier for the set of service
parameters

ULRate O N/A Token bucket filling rate, including ACKs
(packet/h)

ULBucketSize O N/A Token bucket burst size

ULRatePolicy O N/A Drop or mark when exceeding ULRate

DLRate O N/A Token bucket filling rate, including ACKs
(packet/h)

DLBucketSize O N/A Token bucket burst size

DLRatePolicy O N/A Drop or mark when exceeding DLRate

AddGWMetadata O O GW metadata (RSSI, SNR, GW geoloc.,
etc.) are added to the packet sent to AS

DevStatusReqFreq O N/A Frequency to initiate an End-Device status
request (request/day)

ReportDevStatusBattery O N/A Report End-Device battery level to AS

ReportDevStatusMargin O N/A Report End-Device margin to AS

DRMin O N/A Minimum allowed data rate. Used for ADR.

DRMax O N/A Maximum allowed data rate. Used for
ADR.

ChannelMask O N/A Channel mask. sNS does not have to obey
(i.e., informative).

PRAllowed O N/A Passive Roaming allowed

HRAllowed O N/A Handover Roaming allowed

RAAllowed O N/A Roaming Activation allowed

SendLoc O O Enable generation of geographic location
information

LocSolverAuxData O O Auxiliary data that MAY be needed by the
geolocation algorithm when SendLoc=True

AddLocMetadata O O Enable addition of geolocation-specific
ULMetadata

TargetPER O N/A Target Packet Error Rate

MinGWDiversity O N/A Minimum number of receiving GWs
(informative)

 1668
Table 7 Service Profile 1669

“M” indicates “Mandatory to include” (see below for additional considerations), “O” indicates 1670
“Optional to include”, and "N/A" indicates "Not applicable". 1671
 1672
If an optional information parameter is not sent, then the associated setting is at the discretion of 1673
the receiving NS. 1674
 1675
The sender of the ServiceProfile object MAY exchange the parameters with the receiver using an 1676
out-of-band mechanism. Taking this into consideration, when the ServiceProfile is delivered 1677
using an in-band mechanism of this specification, the sender SHALL either include the 1678
ServiceProfileID only (i.e., all other parameters are omitted even if marked as mandatory in 1679
Table 7), or both the ServiceProfileID and all other mandatory parameters (and optionally the 1680
non-mandatory ones as well). The sender SHALL NOT modify parameters once they are bound 1681
to a ServiceProfileID. 1682
 1683

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 60 of 85 The authors reserve the right to change
specifications without notice.

18.3 Routing Profile 1684

 1685
Routing Profile includes information that are needed by the NS for setting up data-plane with the 1686
AS. Table 8 illustrates the information elements that are included in a Routing Profile. 1687
 1688

Information
element

M/O

Description/notes

RoutingProfileID M Unique identifier for the set of routing parameters

AS-ID M ID of the AS

 1689
Table 8 Routing Profile 1690

“M” in the M/O column indicates “Mandatory to include” (see below for additional considerations), 1691
and “O” indicates “Optional to include”. 1692
 1693
The sender of the RoutingProfile object MAY exchange the parameters with the receiver using 1694
an out-of-band mechanism. Taking this into consideration, when the RoutingProfile is delivered 1695
using an in-band mechanism of this specification, the sender SHALL either include the 1696
RoutingProfileID only (i.e., all other parameters are omitted even if marked as mandatory in 1697
Table 8), or both the RoutingProfileID and all other mandatory parameters (and optionally the 1698
non-mandatory ones as well). The sender SHALL NOT modify parameters once they are bound 1699
to a RoutingProfileID. 1700
 1701

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 61 of 85 The authors reserve the right to change
specifications without notice.

19 Usage Data Records 1702

19.1 Network Activation Record 1703

 1704
Network Activation Record is used for keeping track of the End-Devices performing Roaming 1705
Activation. When the Roaming Activation Procedure takes place, then the NS SHALL generate a 1706
monthly Network Activation Record for each ServiceProfileID of another NS that has at least one 1707
End-Device active throughout the month, and dedicated Network Activation Records for each 1708
activation and deactivation of an End-Device from another NS. Table 9 illustrates the details of 1709
the Network Activation Record. 1710
 1711

Information element Description/notes

NSID ID of the roaming partner NS

NetID NetID of the roaming partner NS

ServiceProfileID Service Profile ID

IndividualRecord Indicates if this is an individual (de-)activation record (as opposed to
cumulative record of End-Devices that are active throughout the
month)

TotalActiveDevices Number of End-Devices that have been active throughout the month.
Included if this is a cumulative record.

DevEUI DevEUI of the End-Device that has performed the (de-)activation.
Included if this is an IndividualRecord for a (de-)activation event.

ActivationTime Date/time of the activation. Included if this is an IndividualRecord for
an activation event.

DeactivationTime Date/time of the deactivation. Included if this is an IndividualRecord
for a deactivation event.

 1712
Table 9 Network Activation Record 1713

19.2 Network Traffic Record 1714

 1715
Network Traffic Record is used for keeping track of the amount of traffic served for roaming End-1716
Devices. The NS that allows roaming SHALL generate a monthly Network Traffic Record for 1717
each roaming type (Passive/Handover Roaming) under each ServiceProfileID of another NS that 1718
has at least one End-Device roaming into its network. Table 10 illustrates the details of the 1719
Network Traffic Record. 1720
 1721

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 62 of 85 The authors reserve the right to change
specifications without notice.

 1722
 1723

Information element Description/notes

NSID ID of the roaming partner NS

NetID NetID of the roaming partner NS

ServiceProfileID Service Profile ID

RoamingType Passive Roaming or Handover Roaming

TotalULPackets Number of uplink packets

TotalDLPackets Number of downlink packets

TotalOutProfileULPackets Number of uplink packets that exceeded ULRate but forwarded
anyways per ULRatePolicy

TotalOutProfileDLPackets Number of downlink packets that exceeded DLRate but
forwarded anyways per DLRatePolicy

TotalULBytes Total amount of uplink bytes

TotalDLBytes Total amount of downlink bytes

TotalOutProfileULBytes Total amount of uplink bytes that falls outside the Service Profile

TotalOutProfileDLBytes Total amount of downlink bytes that falls outside the Service
Profile

TotalLoc Number of geographic coordinates reported

 1724
Table 10 Network Traffic Record 1725

 1726
Packet and payload counters are only based on the user-generated traffic. Payload counters are 1727
based on the size of the FRMPayload field. 1728
 1729

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 63 of 85 The authors reserve the right to change
specifications without notice.

20 JoinEUI and NetID Resolution 1730

 1731
When the Network Server receives a Join-request or a Rejoin-request message, it SHALL 1732
resolve to the IP address of the Join Server firstly by concatenating DevEUI and JoinEUI, and if 1733
this resolution fails, it will resolve only using the JoinEUI. Similarly, NetID value SHALL be 1734
resolved to the IP address of the associated Network Server when it is received by a Network 1735
Server in a Rejoin-request message. 1736
 1737
Both types of address resolutions are carried out by using DNS. 1738
 1739
It should be noted that some organizations need to operate Join Servers without operating a 1740
network, therefore the Join Server resolution mechanism needs to work without the need to 1741
allocate a NetID. 1742
 1743

20.1 NetID and JoinEUI Conversion for the DNS Configuration 1744

 1745
The LoRa Alliance SHALL establish and operate two dedicated subdomains to resolve Join 1746
Servers and NetIDs, rooted at JOINEUIS.lorawan.net and NETIDS. lorawan.net, respectively. 1747
 1748
A 24 bit NetID, for e.g. “6292746”, in decimal format is represented as follows in the hexadecimal 1749
format: 1750
 1751
 0x60050A 1752
 1753
Each hexadecimal digit is a nibble, and the order of encoding follows from higher to lower order 1754
nibble. Concatenating the domain name “NETIDS.lorawan.net” as suffix to the encoded 1755
hexadecimal conversion of the NetID will result in a Fully Qualified Domain Name (FQDN) as 1756
follows: 1757
 1758

60050a.NETIDS.lorawan.net 1759
 1760
 1761
A 64bit Join EUI (IEEE EUI-64) is represented as follows in the hexadecimal format: 1762
 1763
 0x00005E100000002F 1764
 1765
Similarly, a 64bit DevEUI is represented as follows in the hexadecimal format: 1766
 1767
 0x0102030405060708 1768
 1769
Each hexadecimal digit is a nibble, and the order of encoding follows from lower to higher order 1770
nibble. Hence the nibbles are encoded in reverse order and periods are added between each 1771
hexadecimal digit. 1772
 1773
By default, concatenating the domain name “JOINEUIS.lorawan.net” as suffix to the encoded 1774
hexadecimal conversion of the JoinEUI will result in a FQDN as follows: 1775
 1776

f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0.JOINEUIS.lorawan.net 1777
 1778
 1779

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 64 of 85 The authors reserve the right to change
specifications without notice.

In the case, wherein the same JoinEUI needs to point to different Join Servers, then the DevEUI 1780
is concatenated (in the reverse order and periods are added between each hexadecimal DevEUI 1781
value) with the above JoinEUI conversion: 1782
 1783

8.0.7.0.6.0.5.0.4.0.3.0.2.0.1.f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0.JOINEUIS.lorawan.net 1784
 1785

 1786
Note: The JoinEUIs or the concatenation of DevEUI and JoinEUIs are encoded in reverse order to 1787
leverage the benefits of hierarchical provisioning in the DNS. Provisioning in the DNS in the event 1788
of the same JoinEUI resolving to multiple JS should be left to the expertise of the DNS operator. 1789
The DNS operator introduces restriction in such cases and provisioning will be done after proper 1790
testing, which will be taken care of on a case-by-case basis. 1791
 1792
 1793
 1794

20.2 NetID and JoinEUI Provisioning 1795

 1796
The NetID will be provisioned in the zone “NETIDS.lorawan.net”. The resource corresponding to 1797
the NetID could be provisioned in different DNS resource record formats (such as NS, CNAME, 1798
A, AAAA). 1799
 1800
60050a.NETIDS.lorawan.net IN CNAME example.com. 1801
60050a.NETIDS.lorawan.net IN A 192.0.2.0. 1802
 1803
Similarly, the zone “JOINEUIS.lorawan.net” could be provisioned in the with different DNS 1804
resource record formats based on the requirements as follows. 1805
 1806
Only with the JoinEUI: 1807
 1808
f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0. JOINEUIS.lorawan.net. IN CNAME example.net 1809
 1810
A Full concatenation of DevEUI and JoinEUI, as explained in Section 20.1: 1811
 1812
8.0.7.0.6.0.5.0.4.0.3.0.2.0.1.f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0. JOINEUIS.lorawan.net. IN AAAA 1813
2001:db8:85a3::8a2e:370:7334 1814
 1815
In cases for operational efficiency, the concatenation could be done using the Wildcard [RFC 1816
4592] feature of the DNS: 1817
 1818
*.0.4.0.3.0.2.0.1.f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0.JOINEUIS.lorawan.net. IN CNAME 1819
example.com. 1820
 1821

20.3 NetID Resolution 1822

 1823
The input parameter is the 24-bit NetID as carried in the Rejoin-request message sent by the 1824
End-Device to the Network Server of the Visited Network. 1825
 1826
The Visited Network Server SHOULD convert the NetID received in the Rejoin-request message 1827
to a DNS query as described in the Section 20.1. The Network Server will use the DNS resolver 1828
to resolve the IP address of the Home Network Server. 1829
 1830

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 65 of 85 The authors reserve the right to change
specifications without notice.

20.4 JoinEUI and DevEUI-JoinEUI Concetanation Resolution 1831

 1832
The input parameter is the 64-bit JoinEUI or a concatenation of DevEUI and JoinEUI as carried 1833
in the Join-request message sent by the End-Device to the Network Server of the Home Network 1834
or the Rejoin-request message sent by the End-Device to the Network Server of the Visited 1835
Network. 1836
 1837
The receiving Network Server should first make a DNS query concatenating DevEUI and 1838
JoinEUI, and if the resolution fails, it falls back to resolving using the JoinEUI (as explained in 1839
Section 20.1). 1840
 1841
Network Server will use the DNS resolver to resolve the IP address of the Join Server. 1842
 1843

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 66 of 85 The authors reserve the right to change
specifications without notice.

21 Transport Layer 1844

 1845

The LoRaWAN backend interfaces involve interconnection among the network elements, such 1846
as the JS, the NS, and the AS for delivering control signals and data packets. The following 1847
network interfaces are in scope of the current specification: 1848
 1849
- AS-JS (optional) 1850

- JS-NS 1851

- NS-NS 1852

A JoinEUI identifies a JS, whereas an NS is identified by its NetID. Multiple JoinEUIs may 1853
identify the same JS. Both the JoinEUI and the NetID can be resolved into the IP address of the 1854
respective servers using DNS. 1855
 1856
Network elements SHALL rely on a security solution that can provide mutual end-point 1857
authentication, integrity and replay protection, and confidentiality when communicating with each 1858
other. The choice of mechanism used for achieving these properties is left to the deployments 1859
(e.g., using IPsec VPN, HTTPS, physical security, etc.) 1860
 1861
Network element SHALL use HTTP 1.1 [RFC2616] and encode the payloads using JSON. 1862
In order to support sending messages (signal or data) in both directions, a pair of HTTP 1863
connections needs to be setup between the two end-points. Each end-point SHALL initiate and 1864
maintain an HTTP connection with the other end-point. HTTP end-points SHOULD use 1865
persistent connections. 1866
 1867

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 67 of 85 The authors reserve the right to change
specifications without notice.

22 Key Transport Security 1868

 1869
Several times during a LoRa Session, keys need to be exchanged between servers (on JS-AS, 1870
JS-NS or NS-NS interfaces for instance). 1871
 1872
To secure the transport of those keys, Key Encryption Keys (KEK) can be used to encrypt them, 1873
following the wrapping process defined in the RFC 3394. 1874
 1875
On top of that, each Key Encryption Key is associated with a Key Encryption Key Label (KEKLabel) 1876
and a wrapping algorithm as defined in the RFC3394 to allow selecting the right key and the right 1877
algorithm during the unwrapping operation. 1878
 1879
The set of KEK, associated KEKLabels, and algorithm are generated and exchanged between the 1880
servers during an offline process that is not part of this specification, servers being of 2 kind: the 1881
key requester and the key sender. 1882
 1883
The decision to wrap or not a key SHALL always be taken by the entity who is in charge of 1884
delivering the key (i.e., key sender). 1885
 1886
Table 11 provides the details of the KeyEnvelope Object that is used for wrapping keys. 1887
 1888

Information element M/O Description/notes

KEKLabel O This label identifies the key to be used to unwrap the
AESKey. If this value is not present, it means the
AESKey is transmitted in clear.

AESKey M AESKey carries the RFC3394-wrapped key if the
KEKLabel field is present. If the KEKLabel field is not
present, then the AESKey carries the key in clear.

 1889
Table 11 KeyEnvelope Object 1890

 1891

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 68 of 85 The authors reserve the right to change
specifications without notice.

23 Messages and Payloads 1892

23.1 Encoding 1893

 1894
HTTP is used as the transport layer for sending the backend request, answer, and notification 1895
messages (e.g., JoinReq, JoinAns, ErrorNotif). Following interfaces carry both the backend 1896
request and answer messages over HTTP Requests while using HTTP Responses simply for 1897
acknowledging the delivery: fNS-sNS, sNS-hNS. When the delivery is successful, independently 1898
of the backend answer result, HTTP Response SHOULD use HTTP 2xx Status-Code class of 1899
response. Only when the delivery is not successful (e.g. malformed HTTP request), HTTP 1900
Response SHOULD use HTTP 4xx or 5xx Status-Code class of response. In that case the 1901
backend request SHALL NOT be answered. Following interfaces carry the backend request 1902
messages over HTTP Requests, whereas the backend answer messages may be carried over 1903
either the HTTP Response or a subsequent HTTP Request: hNS-JS, vNS-JS, AS-JS. The 1904
method used by the JS for each backend peer is determined out-of-band. Notification messages 1905
are one-way messages. They are carried over HTTP Requests while the returned HTTP 1906
Responses simply acknowledge their delivery. 1907
 1908
Network elements SHALL use JSON data format for sending request, answer, and notification 1909
messages. When a network element has a message to send to another network element in 1910
HTTP Request, it SHALL generate an HTTP POST Request for Target URL. Target URL is a 1911
configuration parameter that is agreed upon between the two network elements interfacing with 1912
each other. For example, on a given NS, the Target URL for a JS can be 1913
"https://js.lora_operator.com". Because a given NS may be serving multiple roles at the same 1914
time (acting as fNS, sNS, and hNS), sender of a request SHALL indicate the intended receiver 1915
on the target NS by appending one of the following extensions to the Target URL: “/fns”, “/sns”, 1916
“/hns”. An example Target URL for a request sent to the hNS part of a server is 1917
“https://ns.lora_operator.com/hns”. In case of Roaming Activation, role of the visited NS is not 1918
determined until it receives the ProfileAns message from hNS. The sender of the backend 1919
answer messages transmitted prior to that determination (more specifically, HomeNSAns and 1920
ProfileAns messages) SHALL use the fNS URL of the visited NS. 1921
 1922
HTTP carries the request, answer, and notification messages as a JSON-encoded payload with 1923
various objects. Messages SHALL use "application/json" Media type (HTTP Content-Type 1924
header field). Names of the objects that need to be included in a given message are provided in 1925
the sections that describe the detailed message flows. Encoding of each object type is provided 1926
in Section 23.3. Each message SHALL include a ProtocolVersion object whose value is set to 1927
“1.1” by the implementations of this specification, MessageType object that defines the action 1928
required for that message, and SenderID and ReceiverID objects. The sender of the message 1929
SHALL set the SenderID to the NetID, JoinEUI, or AS-ID of the sender, depending on whether 1930
the sender is an NS or JS or an AS, respectively. Similarly, the sender of the message SHALL 1931
set the ReceiverID to the NetID, JoinEUI, or AS-ID of the intended receiver, depending on 1932
whether the receiver is an NS or JS or an AS, respectively. The sender SHALL include 1933
SenderNSID if it is an NS, and ReceiverNSID if the receiver is an NS. 1934
 1935
In order for a network element to be able to match a received message with the pending 1936
request/answer message a TransactionID is used. The sender of a request message SHALL 1937
include a TransactionID in the message whose value setting is at the discretion of the sender. 1938
The sender of an answer or notification message SHALL include the same TransactionID that 1939
was received in the message that triggered the answer or notification message. If a network 1940
element receives an answer or notification message for which there is no associated request or 1941
answer with the TransactionID value, then it SHALL discard the received message. 1942

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 69 of 85 The authors reserve the right to change
specifications without notice.

 1943
If the ProtocolVersion of the received message is not set to “1.0” or “1.1”, then the receiving 1944
network element SHALL return a message carrying Result=InvalidProtocolVersion. If the 1945
SenderID or the ReceiverID of the received message is unknown to the receiving network 1946
element, then it SHALL return a message carrying Result=UnknownSender or 1947
UnknownReceiver. When the MessageType is unknown to the receiver network element, it 1948
SHALL return a message with the same MessageType carrying Result=MalformedRequest. 1949
 1950
A network element MAY include SenderToken in its messages if it expects the target network 1951
element to echo the same value in ReceiverToken for each subsequent messages that are 1952
associated with the same End-Device. The sNS SHALL NOT send a SenderToken when 1953
communicating with a stateless fNS, as the fNS cannot store that token. A network element 1954
SHALL include a ReceiverToken in its messages if it received a SenderToken from the target 1955
network element for the same End-Device. In that case the network element SHALL copy the 1956
value of the received SenderToken to the transmitted ReceiverToken. 1957
 1958
Figure 18 and Figure 19 illustrate two variants of the HTTP message flow for OTA Activation at 1959
Home Procedure as an example. While these figures are showing the HTTP details, rest of the 1960
figures in this document only illustrate the backend messages (e.g., not showing HTTP 1961
Responses unless they carry a backend message as a payload). 1962
 1963

 1964
 1965

Figure 18 Backend messages carried over HTTP Requests 1966

 1967
 1968

End-Device JS NS

1. Join-request

6. Join-accept

2. POST/Base_URL {Objects}

3. 200 OK

4. POST/Base_URL {Objects}

5. 200 OK

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 70 of 85 The authors reserve the right to change
specifications without notice.

 1969
Figure 19 Backend messages carried over HTTP Request and Responses 1970

 1971
 1972

End-Device JS NS

1. Join-request

4. Join-accept

2. POST/Base_Url {List of Objects}

3. 200 OK {List of Objects}

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 71 of 85 The authors reserve the right to change
specifications without notice.

23.2 Backend Message Types 1973

 1974
Table 12 provides the list of backend message types in pairs, when applicable. Message type 1975
names are case-sensitive. 1976
 1977
 1978

Message Types

JoinReq JoinAns

RejoinReq RejoinAns

AppSKeyReq AppSKeyAns

PRStartReq PRStartAns

PRStartNotif N/A

PRStopReq PRStopAns

HRStartReq HRStartAns

HRStopReq HRStopAns

HomeNSReq HomeNSAns

ProfileReq ProfileAns

XmitDataReq XmitDataAns

XmitLocReq XmitLocAns

ErrorNotif N/A

 1979
Table 12 Backend message types 1980

 1981
Table 13 provides the list of payload objects carried by each backend message. Payload object 1982
names are case-sensitive. If a discrepancy ever occurs between the Table 13 and the 1983
description of the associated procedures, the latter one takes precedence. 1984
 1985

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 72 of 85 The authors reserve the right to change
specifications without notice.

 1986

J
o
in

R
e

q

J
o
in

A
n
s

R
e
jo

in
R

e
q

R
e
jo

in
A

n
s

A
p
p

S
K

e
y
R

e
q

A
p
p

S
K

e
y
A

n
s

P
R

S
ta

rt
R

e
q

P
R

S
ta

rt
A

n
s

P
R

S
ta

rt
N

o
ti
f

P
R

S
to

p
R

e
q

P
R

S
to

p
A

n
s

H
R

S
ta

rt
R

e
q

H
R

S
ta

rt
A

n
s

H
R

S
to

p
R

e
q

H
R

S
to

p
A

n
s

H
o
m

e
N

S
R

e
q

H
o
m

e
N

S
A

n
s

P
ro

fi
le

R
e
q

P
ro

fi
le

A
n
s

X
m

it
D

a
ta

R
e

q

X
m

it
D

a
ta

A
n
s

X
m

it
L
o
c
R

e
q

X
m

it
L
o
c
A

n
s

E
rr

o
rN

o
ti
f

ProtocolVersion M

SenderID M

ReceiverID M

TransactionID M

MessageType M

SenderNSID M M M M M M M M M M M M M M M M M M M M

ReceiverNSID M M M M M M M M M M M M M M M M M M M M

SenderToken O

ReceiverToken O

MACVersion M M M

PHYPayload M Ms M Ms M Os M Ms M1

FRMPayload M1

Result M M M M M M M M M M M M M

DevEUI M M M M Os M M M M M

Lifetime Ms Ms Os O Ms

SNwkSIntKey Ms
1a

 Ms
1a

 Ms
1a

FNwkSIntKey Ms
1a

 Ms
1a

 Os
1

 Ms
1a

NwkSEncKey Ms
1a

 Ms
1a

 Ms
1a

NwkSKey Ms
1b

 Ms
1b

 Os
1

 Ms
1b

FCntUp Os

DevAddr M M O

DeviceProfile Of Ms

ServiceProfile Os Ms

ULMetaData M M M2

DLMetaData Os Ms M2

DLSettings M M O

RxDelay M M O

CFList O O O

AppSKey Ms
+1

 Ms
+1

 Ms

SessionKeyID Ms
+1

 Ms
+1

M M

DeviceProfileTimestamp M Of Ms

HNSID Ms

HNetID Ms

FCntDown

RoamingActivationType Ms

DLFreq1 Os Os

DLFreq2 Os Os

Informative O

LocationInfo M

DupUL O O

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 73 of 85 The authors reserve the right to change
specifications without notice.

DedupWindowSize O

VSExtension O

 1987
Table 13 Messages and payloads 1988

 1989
The following notations are used in Table 13: 1990
 1991

M: Mandatory 1992
O : Optional 1993
Ms : Mandatory, when Result=Success 1994
Mf : Mandatory, when Result=Failure 1995
Os : Optional, when Result=Success 1996
Of : Optional, when Result=Failure 1997
MX : Mandatory to include exactly one of the 2 (groups of) objects marked with the same 1998
value X. When shown as MXY, objects marked with the same value Y are considered as a 1999
group. 2000
M+X: Mandatory to include at least one of the 2 objects marked with the same value X. 2001
 2002
An empty cell indicates the object is never used with the designated message. 2003

 2004

23.3 Error Notification Messages 2005

 2006
ErrorNotif is defined as a one-way notification message that is generated in response to an 2007
invalid answer messages (e.g., missing a mandatory object or an object with incorrect content, 2008
unknown SenderID/ReceiverID, etc.). The receiver of the invalid answer message SHALL send 2009
an ErrorNotif message to the sender of the answer message, carrying a Result value other than 2010
Success. 2011
 2012

23.4 Data Types 2013

 2014
Table 14 provides the JSON object details for various message payloads defined in this 2015
specification. When an object defined in this specification corresponds to a parameter defined in 2016
the LoRaWAN specification (e.g., DevEUI, SNwkSIntKey, etc.), then the parameter details in that 2017
specification also apply to the corresponding object value in this specification (e.g., DevEUI is 64 2018
bits, SNwkSIntKey is 128 bits, etc.). 2019
 2020
The object named VSExtension (Vendor-Specific Extension) allows carrying proprietary objects 2021
between the servers as needed in specific deployment scenarios. Definition of its content is left 2022
to specific implementations. The server SHALL process a received VSExtension Object if it is 2023
recognized by the server, and discard it otherwise. 2024
 2025

Sender of a string type JSON object SHALL encode each character value using a single byte. 2026

 2027
 2028
 2029
 2030
 2031
 2032

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 74 of 85 The authors reserve the right to change
specifications without notice.

Object Name Value Type Notes

ProtocolVersion String Version of backend specification. E.g., "1.1".

SenderID String Hexadecimal representation in ASCII format
in case of carrying NetID or JoinEUI, ASCII
string in case of AS-ID (max 128 characters)

ReceiverID String Hexadecimal representation in ASCII format
in case of carrying NetID or JoinEUI, ASCII
string in case of AS-ID (max 128 characters)

TransactionID Number 32bit value

MessageType String String representation of values in Table 12
(e.g., “JoinReq”)

SenderNSID String Hexadecimal representation in ASCII format

ReceiverNSID String Hexadecimal representation in ASCII format

SenderToken String Hexadecimal representation in ASCII format
(max 512 characters)

ReceiverToken String Hexadecimal representation in ASCII format
(max 512 characters)

PHYPayload String Hexadecimal representation in ASCII format

FRMPayload String Hexadecimal representation in ASCII format

Result Object See Table 15

DevEUI String Hexadecimal representation in ASCII format

Lifetime Number Unit: Seconds

SNwkSIntKey Object See Table 16

FNwkSIntKey Object See Table 16

NwkSEncKey Object See Table 16

NwkSKey Object See Table 16

DevAddr String Hexadecimal representation in ASCII format

HNSID String Hexadecimal representation in ASCII format

HNetID String Hexadecimal representation in ASCII format

DeviceProfile Object See Table 17

ServiceProfile Object See Table 18

RoutingProfile Object See Table 19

ULMetaData Object See Table 20

DLMetaData Object See Table 22

DLSettings String Hexadecimal representation in ASCII format

RxDelay Number

CFList String Hexadecimal representation in ASCII format

AppSKey Object See Table 16

SessionKeyID String Hexadecimal representation in ASCII format
(max 16 characters)

DeviceProfileTimestamp String Timestamp of last Device Profile change
(ISO 8601)

RoamingActivationType String Acceptable values: “Passive”, “Handover”

Informative Boolean Always set to True

LocationInfo Object See Table 23

DupUL Boolean Always set to True

DedupWindowSize Number Unit: Milliseconds

VSExtension Object See Table 24

 2033
Table 14 JSON encoding of top-level objects 2034

 2035

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 75 of 85 The authors reserve the right to change
specifications without notice.

Hexadecimal ASCII printable representation of a value may start with "0x" and may use upper or 2036
lower case letters. 2037
 2038
Table 15 provides the details of the Result Object. 2039
 2040
 2041

Object Name Value Type Notes

ResultCode String "Success" or one of the error
strings defined in Table 25

Description String Detailed information related to the
ResultCode (optional, max 128
characters).

 2042

Table 15 Result Object 2043

 2044
Table 16 provides the details of the KeyEnvelope Object. This object format is used for 2045
SNwkSIntKey, FNwkSIntKey, NwkSEncKey, NwkSKey, and AppSKey Objects. 2046
 2047
 2048

Object Name Value Type Notes

KEKLabel String Max 16 characters

AESKey String Hexadecimal representation in
ASCII format

 2049

Table 16 KeyEnvelope Object 2050

 2051

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 76 of 85 The authors reserve the right to change
specifications without notice.

Table 17 provides the details of the DeviceProfile Object. 2052
 2053

Object Name Value Type Notes

DeviceProfileID String Max 64 characters

SupportsClassB Boolean

ClassBTimeout Number Unit: seconds

PingSlotPeriod Number

PingSlotDR Number

PingSlotFreq Number

SupportsClassC Boolean

ClassCTimeout Number Unit: seconds

MACVersion String Example: "1.0.2" [LW102]

RegParamsRevision String Example: "B" [RP102B]

RXDelay1 Number

RXDROffset1 Number

RXDataRate2 Number Example (DR0): 0. See data rate tables
in Regional Parameters document.

RXFreq2 Number Value of the frequency, e.g., 868.10

FactoryPresetFreqs Array of Numbers

MaxEIRP Number In dBm

MaxDutyCycle Number Example: 0.10 indicates 10%

SupportsJoin Boolean

RFRegion String See Note 2

Supports32bitFCnt Boolean

 2054
Table 17 DeviceProfile Object 2055

 2056
Note 2: Name of the RF region (e.g., "EU868", "US902", etc.). The valid values are provided by 2057
the RFRegion parameter defined in the Regional Parameters document for each region. 2058
 2059

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 77 of 85 The authors reserve the right to change
specifications without notice.

Table 18 provides the details of the ServiceProfile Object. 2060
 2061

Object Name Value Type Notes

ServiceProfileID String Max 64 characters

ULRate Number

ULBucketSize Number

ULRatePolicy String Acceptable values: "Drop", "Mark"

DLRate Number

DLBucketSize Number

DLRatePolicy String Acceptable values: "Drop", "Mark"

AddGWMetadata Boolean

DevStatusReqFreq Number Unit: requests-per-day

ReportDevStatusBatery Boolean

ReportDevStatusMargin Boolean

DRMin Number

DRMax Number

ChannelMask String Hexadecimal representation in ASCII
format

PRAllowed Boolean

HRAllowed Boolean

RAAllowed Boolean

SendLoc Boolean

LocSolverAuxData String Hexadecimal representation in ASCII
format (max 512 characters)

AddLocMetadata Boolean

TargetPER Number Example: 0.10 indicates 10%

MinGWDiversity Number

 2062
Table 18 ServiceProfile Object 2063

 2064
Table 19 provides the details of the RoutingProfile Object. 2065
 2066

Object Name Value Type Notes

RoutingProfileID String Max 64 characters

AS-ID String Value can be IP address, DNS name, etc.
(max 128 characters)

 2067
Table 19 RoutingProfile Object 2068

 2069
 2070

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 78 of 85 The authors reserve the right to change
specifications without notice.

Table 20 provides the details of the ULMetaData Object. 2071
 2072

Object Name Value Type Notes

DevEUI String Hexadecimal representation in ASCII
format, big-endian, no separator

DevAddr String Hexadecimal representation in ASCII
format

FPort Number Integer

FCntDown Number Integer

FCntUp Number Integer

Confirmed Boolean

DataRate Number See data rate tables in Regional
Parameters document

ULFreq Number Floating point (MHz)

Margin Number Integer value reported by the End-
device in DevStatusAns

Battery Number Integer value reported by the End-
device in DevStatusAns

FNSULToken String Hexadecimal representation in ASCII
format (max 512 characters)

RecvTime String Use ISO 8601

RFRegion String See Note 2 (above)

GWCnt Number Integer

GWInfo Array of
GWInfoElement
Objects

See Table 21

 2073
Table 20 ULMetadata Object 2074

 2075
Table 21 provides the details of the GWInfoElement Object. 2076
 2077

Object Name Value Type Notes

GWID String Hexadecimal representation of 32bit
value in ASCII (see Note 3)

AntennaID Number

FineRecvTime Number

FRTContext String Hexadecimal representation in ASCII
format (max 512 characters)

RFRegion String See Note 2 (above)

RFParamSetID String

RSSI Number Signed integer, unit: dBm

SNR Number Unit: dB

Lat Number Unit: DD, based on WGS84

Lon Number Unit: DD, based on WGS84

Alt Number Unit: meter, based on WGS84

ULToken String Hexadecimal representation in ASCII
format (max 512 characters)

DLAllowed Boolean

 2078
Table 21 GWInfoElement Object 2079

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 79 of 85 The authors reserve the right to change
specifications without notice.

Note 3 : Class B beacons can carry only 24bit values to identify gateways. The 24 LSBs of GWID 2080
can be used in the beacon payload when the network intends to convey this value. 2081
 2082
 2083
Table 22 provides the details of the DLMetaData Object. 2084
 2085

Object Name Value Type Notes

DevEUI String Hexadecimal representation in ASCII
format

FPort Number

FCntDown Number

Confirmed Boolean

DLFreq1 Number At least DLFreq1 or DLFreq2 SHALL
be present.

DLFreq2 Number At least DLFreq1 or DLFreq2 SHALL
be present.

RXDelay1 Number

ClassMode String Only values “A” and “C” are supported

DataRate1 Number Present only if DLFreq1 is present

DataRate2 Number Present only if DLFreq2 is present

FNSULToken String Hexadecimal representation in ASCII
format (max 512 characters)

GWInfo Array of
GWInfoElement
Objects

See Table 21

HiPriorityFlag Boolean

 2086
Table 22 DLMetadata Object 2087

 2088
Table 24 provides the details of LocationInfo Object. 2089
 2090

Object Name Value Type Notes

LocTime String Use ISO 8601

Lat Number Unit: DD, based on WGS84

Lon Number Unit: DD, based on WGS84

Alt Number Unit: meter, based on WGS84

LocRadius Number Horizontal tolerance, unit: meter

AltRadius Number Vertical tolerance, unit: meter

FCntUp Number FCntUp of most recent packet used in
calculation

 2091

Table 23 LocationInfo Object 2092

 2093

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 80 of 85 The authors reserve the right to change
specifications without notice.

Table 24 provides the details of VSExtension Object. 2094
 2095

Object Name Value Type Notes

VendorID String OUI of the vendor, hexadecimal
representation in ASCII format (max 10
characters)

Object opaque The nature of the object is not defined
 2096

Table 24 VSExtension Object 2097

 2098

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 81 of 85 The authors reserve the right to change
specifications without notice.

23.5 Result Codes 2099

 2100
Table 25 provides list of values that can be assigned to the Result Object. 2101
 2102

Value Description

"Success" Success, i.e., request was granted

"NoAction" Used by hNS to acknowledge receipt of
Rejoin-request by the current sNS

"MICFailed" MIC verification has failed

"FrameReplayed" Received frame is a replay
(DevNonce/RJCount/FCntUp reused)

"JoinReqFailed" JS processing of the JoinReq has failed

"NoRoamingAgreement” There is no roaming agreement between
the operators

"DevRoamingDisallowed" End-Device is not allowed to roam

“RoamingActDisallowed” End-Device is not allowed to perform
activation while roaming

“ActivationDisallowed“ End-Device is not allowed to perform
activation

"UnknownDevEUI" There is no context related to this DevEUI

"UnknownDevAddr" There is no context related to this DevAddr

"UnknownSender" SenderID or SenderNSID is unknown or
mismatch between the two

"UnkownReceiver" ReceiverID or ReceiverNSID is unknown or
mismatch between the two

"Deferred" Passive Roaming is not allowed for a period
of time

"XmitFailed" fNS failed to transmit DL packet

"InvalidFPort" Invalid FPort for DL (e.g., FPort=0)

"InvalidProtocolVersion" ProtocolVersion is not supported

"StaleDeviceProfile" Device Profile is stale

"MalformedMessage" JSON parsing failed (missing object or
incorrect content)

"FrameSizeError" Wrong size of PHYPayload or FRMPayload

"Other" Used for encoding error cases that are not
standardized yet

 2103
Table 25 Valid values for Result Object 2104

When used, Description field of Result Object optionally reveals the error details. 2105
 2106

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 82 of 85 The authors reserve the right to change
specifications without notice.

Glossary 2107

 2108
ABP Activation by Personalization 2109
ADR Adaptive Data Rate 2110
API Application Programming Interface 2111
AS Application Server 2112
DNS Domain Name Server 2113
ED End-device 2114
fNS Forwarding Network Server 2115
GW LoRa Gateway 2116
HTTP HyperText Transfer Protocol 2117
hNS Home Network Server 2118
IP Internet Protocol 2119
JS Join Server 2120
JSON JavaScript Object Notation 2121
KEK Key Encryption Key 2122
LoRa™ Long Range modulation technique 2123
LoRaWAN™ Long Range network protocol 2124
MAC Medium Access Control 2125
MIC Message Integrity Code 2126
NAPTR Naming Authority Pointer 2127
NS Network Server 2128
OTA Over-the-Air 2129
RF Radio Frequency 2130
RSSI Received Signal Strength Indicator 2131
SF Spreading Factor 2132
SIP Session Initiation Protocol 2133
SNR Signal-to-Noise Ratio 2134
sNS Serving Network Server 2135
TDoA Time Difference of Arrival 2136
 2137

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 83 of 85 The authors reserve the right to change
specifications without notice.

Bibliography 2138

References 2139

 2140
[LW10] LoRaWAN Specification, Version 1.0, LoRa Alliance, January 2015. 2141
[LW102] LoRaWAN Specification, Version 1.0.2, LoRa Alliance, July 2016. 2142
[LW104] LoRaWAN Specification, Version 1.0.4, LoRa Alliance, Oct 2020. 2143
[RP102B] LoRaWAN 1.0.2 Regional Parameters, Revision B, LoRa Alliance, Feb 2017. 2144
[LW11] LoRaWAN Specification, Version 1.1, LoRa Alliance, October 2017. 2145

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 84 of 85 The authors reserve the right to change
specifications without notice.

Revisions 2146

 2147
Revision 1.1: 2148
- Geoloc support added for roaming interfaces 2149
- NSs identified by NSID, allowing use of NetID=0/1 in various cases 2150
- PRStartNotif and ErrorNotif messages defined 2151
- sNS indication for duplicate ULs defined 2152
- fNS dedup window size defined as payload object 2153
- DevEUI added to every message so fNS can identify/count devices 2154
- DevEUI-based JS URL lookup added to DNS 2155
- Fixed the error in Type 3 and Type 4 NwkId lengths 2156
- DeviceProfile RXDataRate2 unit defined 2157
- PRStartAns allowed to carry PHYPayload(Join-accept) 2158
- RFRegion names standardized 2159
- RFParamSetID defined 2160
- Treatment of unspecified MessageTypes defined 2161
- UnknownDevAddr result code used in message flows 2162
- /fNS, /sNS, hNS suffixes required to be used in NS URLs 2163
- Margin and Battery limited to sNS 2164
- Max size set for String types 2165
- fNS use of ServiceProfile limited to only some of the info elements 2166
- DLMetadata added to PRStartAns for Roaming Activation 2167
- HTTP Content-Type and Status-Code defined 2168
- Error result codes clarified, added, and used in message flows 2169
- NetID example fixed 2170
- sNS forced to forward Rejoin-request to hNS 2171
- Clarified that figures are informative, tables are normative 2172
- DeviceProfile not needed in HRStartReq 2173
- XmitDataAns result codes clarified 2174
- GWID length corrected 2175
- DNS usage details refined 2176
- Device/Service/RoutingProfileID use clarified 2177
- Only a single Join-accept sent in response to multiple Join-requests 2178
- HTTP Status-Code use clarified 2179
- FrameReplayed clarified 2180
- GWInfoElement format refined 2181
- Message type and payload object names declared to be case-sensitive 2182
- Relationship between TypePrefix|NwkID in this spec and AddrPrefix in L2 spec clarified 2183
 2184

 2185

TS2-1.1.0 LoRaWAN Backend Interfaces

©2020 LoRa Alliance® Page 85 of 85 The authors reserve the right to change
specifications without notice.

NOTICE OF USE AND DISCLOSURE 2186

Copyright © LoRa Alliance, Inc. (2020). All Rights Reserved. 2187

The information within this document is the property of the LoRa Alliance (“The Alliance”) and its use and disclosure are 2188
subject to LoRa Alliance Corporate Bylaws, Intellectual Property Rights (IPR) Policy and Membership Agreements. 2189

Elements of LoRa Alliance specifications may be subject to third party intellectual property rights, including without 2190
limitation, patent, copyright or trademark rights (such a third party may or may not be a member of LoRa Alliance). The 2191
Alliance is not responsible and SHALL not be held responsible in any manner for identifying or failing to identify any or 2192
all such third party intellectual property rights. 2193

This document and the information contained herein are provided on an “AS IS” basis and THE ALLIANCE DISCLAIMS 2194
ALL WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO (A) ANY WARRANTY THAT THE 2195
USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OF THIRD PARTIES (INCLUDING 2196
WITHOUT LIMITATION ANY INTELLECTUAL PROPERTY RIGHTS INCLUDING PATENT, COPYRIGHT OR 2197
TRADEMARK RIGHTS) OR (B) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 2198
PARTICULAR PURPOSE, TITLE OR NONINFRINGEMENT. 2199

IN NO EVENT WILL THE ALLIANCE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE 2200
OF DATA, INTERRUPTION OFBUSINESS, OR FOR ANY OTHER DIRECT, INDIRECT, SPECIAL OR EXEMPLARY, 2201
INCIDENTIAL, PUNITIVE OR CONSEQUENTIAL DAMAGES OF ANY KIND, IN CONTRACT OR IN TORT, IN 2202
CONNECTION WITH THIS DOCUMENT OR THE INFORMATION CONTAINED HEREIN, EVEN IF ADVISED OF THE 2203
POSSIBILITY OF SUCH LOSS OR DAMAGE. 2204

The above notice and this paragraph must be included on all copies of this document that are made. 2205

LoRa Alliance, Inc. 2206
5177 Brandin Court 2207
Fremont, CA 94538 2208
United States 2209
 2210

Note: LoRa Alliance® and LoRaWAN® are licensed trademarks. All Company, brand and product names may be 2211
trademarks that are the sole property of their respective owners. 2212
 2213

